Skip to main content
Log in

Predicting viewer-perceived activity/dominance in soccer games with stick-breaking HMM using data from a fixed set of cameras

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

We attempted to predict activity/dominance for soccer games, where activity is defined as the degree of activity of the game as perceived by the viewer, whereas dominance is the degree at which the viewer perceives a particular team to dominate over the other team. Such activity/dominance information would help a layman viewer understand the game. It would also enable construction of an automatic digest creation system that extracts scenes having high activity/dominance. There are two facets of this study: 1. The main part of the underlying prediction model consists of a Stick-Breaking Hidden Markov Model, where the data automatically estimates the number of states of the Markov process behind the data. 2. The data used in this paper is vector time-series data consisting of player, referee, and ball positions, together with team information, acquired by a set of fixed cameras. The problem was approached with a Bayesian framework where learning and prediction were implemented by three different methods: Markov Chain Monte Carlo, Expectation Maximization, and Variational Bayes. The proposed method was tested using a dataset consisting of 10 professional soccer games and was compared against standard regression methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. There is one instance, however, when we partly use broadcasted TV video to obtain activity/dominance training data from evaluators, which will be described in Section 4.5. Such video data, however, will not be necessary in the prediction phase.

  2. A preliminary experiment showed that an HMM with the Stick-Breaking prior performed better than an ordinary Bayesian HMM.

  3. There would be no impact on the reliability of the final model.

  4. 4 The cameras are set so that all parts of the field can be viewed from at least two cameras. However, the details of the image tracking system cannot be presented due to a non-disclosure agreement.

  5. Typically in MCMC, initial samples are not used since the operation is in an initializing phase. This initializing phase is often called the “burn-in” period. After the “burn-in”, a designated number of samples is used for prediction. There are no standard methods for optimally setting the sample size and burn-in period, so most of the time they are set in an empirical manner.

  6. Note that λ presented here is different from λ in the main text.

References

  1. Aigrain P, Zhang H, Petkovic D (1996) Content-based representation and retrieval of visual media: a state-of-the-art review. Representation and retrieval of visual media in multimedia systems pp 3–26

  2. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Second international symposium on information theory, vol 1. Springer, pp 267–281

  3. Assfalg J, Bertini M, Colombo C, Del Bimbo A, Nunziati W (2003) Semantic annotation of soccer videos: automatic highlights identification. Comp Vision Image Underst 92(2):285–305

    Article  Google Scholar 

  4. Babaguchi N, Kawai Y, Ogura T, Kitahashi T (2004) Personalized abstraction of broadcasted American football video by highlight selection. IEEE Trans Multimed 6(4):575–586

    Article  Google Scholar 

  5. Barnard M, Odobez J, Bengio S (2003) Multi-modal audio-visual event recognition for football analysis. In: Neural networks for signal processing, 2003. IEEE 13th Workshop on NNSP’03. 2003. IEEE, pp 469–478

  6. Beal M (2004) Variational algorithms for approximate Bayesian inference. Ph.D. thesis, University College London

  7. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2:27:1–27:27. Software available at, http://www.csie.ntu.edu.tw/cjlin/libsvm

    Article  Google Scholar 

  8. Cheng C, Hsu C (2006) Fusion of audio and motion information on HMM-based highlight extraction for baseball games. IEEE Trans Multimed 8(3):585–599

    Article  Google Scholar 

  9. Comon P (1994) Independent component analysis, a new concept? Sig Process 36(3):287–314

    Article  MATH  Google Scholar 

  10. DataStadium Inc. (2012). http://www.datastadium.co.jp/

  11. Ding Y, Fan G (2007) Segmental hidden Markov models for view-based sport video analysis. In: Computer Vision and Pattern Recognition, 2007. IEEE Conference on CVPR’07. IEEE, pp 1–8

  12. Duan L, Xu M, Chua T, Tian Q, Xu C (2003) A mid-level representation framework for semantic sports video analysis. In: Proceedings of the eleventh ACM international conference on Multimedia. ACM, pp 33–44

  13. Duan L, Xu M, Tian Q, Xu C, Jin J (2005) A unified framework for semantic shot classification in sports video. IEEE Trans Multimed 7(6):1066–1083

    Article  Google Scholar 

  14. Durbin R (1998) Biological sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge University Press

  15. Ferguson T (1973) A Bayesian analysis of some nonparametric problems. Ann Stat:209–230

  16. Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1):1–22. http://www.jstatsoft.org/v33/i01/

  17. Goldwater S, Griffiths T (2007) A fully Bayesian approach to unsupervised part-of-speech tagging. Proc ACL:744–751

  18. Green P (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82(4):711–732

  19. Huang C, Shih H, Chao C (2006) Semantic analysis of soccer video using dynamic Bayesian network. IEEE Trans Multimed 8(4):749–760

    Article  Google Scholar 

  20. Ishwaran H, James L (2001) Gibbs sampling methods for stick-breaking priors. J Am Stat Assoc 96(453):161–173

    Article  MathSciNet  MATH  Google Scholar 

  21. Johnson M (2007) Why doesn’t EM find good HMM POS-taggers? In: Proceedings on EMNLP-CoNLL

  22. Kaburagi T, Matsumoto T (2008) A generalized hidden Markov model approach to transmembrane region prediction with Poisson distribution as state duration probabilities. Inf Media Technol 3(2):327–340

    Google Scholar 

  23. Kimura T, Tokuda T, Nakada Y, Nokajima T, Matsumoto T, Doucet A (2013) Expectation-maximization algorithms for inference in Dirichlet processes mixture. Pattern Anal Applic 16(1):55–67

    Article  MathSciNet  MATH  Google Scholar 

  24. Kokaram A, Rea N, Dahyot R, Tekalp M, Bouthemy P, Gros P, Sezan I (2006) Browsing sports video: trends in sports-related indexing and retrieval work. IEEE Signal Proc Mag 23(2):47–58

    Article  Google Scholar 

  25. Kon H, Haseyama M, Kitajima H (2005) A measurement of team advantage for soccer video analysis. IEIC Technical Report. Institute of Electronics, Information and Communication Engineers 104(646):35–40

    Google Scholar 

  26. Kupiec J (1992) Robust part-of-speech tagging using a hidden Markov model. Comput Speech Lang 6(3):225–242

    Article  Google Scholar 

  27. Mannens E, Troncy R, Braeckman K, Van Deursen D, Van Lancker W, De Sutter R, Van de Walle R (2009) Automatic metadata enrichment in news production. In: Image Analysis for Multimedia Interactive Services, 2009. 10th Workshop on WIAMIS’09. IEEE, pp 61–64

  28. Money AG, Agius H (2010) Elvis: entertainment-led video summaries. ACM Trans Multimed Comput Commun Appl (TOMCCAP) 6(3):17

  29. Motoi S, Misu T, Nakada Y, Yazaki T, Kobayashi G, Matsumoto T, Yagi N (2012) Bayesian event detection for sport games with hidden Markov model. Pattern Anal Applic:1–14

  30. Paisley J, Carin L (2009) Hidden Markov models with stick-breaking priors. IEEE Trans Signal Process 57(10):3905–3917

  31. Rabiner L (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77(2):257–286

    Article  Google Scholar 

  32. Romero LP, Traub MC, Leyssen H, Hardman L (2013) Second screen interactions for automatically web-enriched broadcast video. In: Submitted to: ACM SIGCHI Conference on Human Factors in Computing Systems (CHI 2013) Exploring And Enhancing the User Experience for Television Workshop, Paris, France

  33. Sadlier D, O’Connor N (2005) Event detection in field sports video using audio-visual features and a support vector machine. IEEE Trans Circ Syst Video Technol 15(10):1225–1233

    Article  Google Scholar 

  34. Sasaki H, Nakada Y, Kaburagi T, Matsumoto T (2007) Bayesian angle information HMM with a von Mises distribution and its implementation using a Bayesian Monte Carlo method. In: Proceedings European Symposium on Time Series Prediction, pp 29–38

  35. Schliep A, Schönhuth A, Steinhoff C (2003) Using hidden Markov models to analyze gene expression time course data. Bioinformatics 19(suppl 1):i255–i263

    Article  Google Scholar 

  36. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  MathSciNet  MATH  Google Scholar 

  37. Scott SL (2002) Bayesian methods for hidden Markov models: recursive computing in the 21st century. J Am Stat Assoc 97:337–351

  38. Shih H, Huang C (2005) Msn: statistical understanding of broadcasted baseball video using multi-level semantic network. IEEE Trans Broadcast 51(4):449–459

    Article  Google Scholar 

  39. Takahashi M, Misu T, Naemura M, Fujii M, Yagi N (2007) Enrichment system for live sports broadcasts using real-time motion analysis and computer graphics. In: International Conference Broadcast Asia (BroadcastAsia2007)

  40. Tracab (2012). http://www.tracab.com/

  41. Ueda N (2002) Bayesian learning [iii] : Basics of variational Bayesian learning. The Institute of Electronics Information and Comunication Engineers (IEICE) 85(7):504–509

    Google Scholar 

  42. Yasuda H, Takahashi K, Matsumoto T (2000) A discrete HMM for online handwriting recognition. Int J Pattern Recognit Artif Intell 14(05):675–688

    Article  Google Scholar 

  43. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Series B 67(2):301–320

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kaburagi.

Additional information

We thank Professor A. Doucet at Oxford University and Mr. F. Akazawa for discussions. We also thank the editor and reviewers for their comments.

Appendices

Appendix I: Details of Gibbs Samling

For simplicity, we present the case where the training data is a single sequence. One can easily obtain a case where the training data is multiple sequences. First, let us recall the the function Ψ t (⋅) used in the (42). This function can be set as

$$\begin{array}{@{}rcl@{}} &&{\Psi}_{t}(y, z_{-\{t\}}, \phi)={{\Psi}^{1}_{t}}(y_{-\{t\}},z_{-\{t\}};\beta) {{\Psi}^{2}_{t}}(z_{-\{t\}}; \alpha){{\Psi}^{3}_{t}}(z_{1};\gamma), \end{array} $$
(58)
$$\begin{array}{@{}rcl@{}} &&{{\Psi}^{1}_{t}}(y_{-\{t\}},z_{-\{t\}};\beta)=P(y_{-\{t\}}|z_{-\{t\}}, \beta), \end{array} $$
(59)
$$\begin{array}{@{}rcl@{}} &&{{\Psi}^{2}_{t}}(z_{-\{t\}};\alpha)= \left\{ \begin{array}{ll} P(z_{-\{1,2\}}|z_{2},\alpha)&(t=1)\\ P(z_{-\{1,t, t+1\}}|z_{1}, z_{t+1},\alpha)&(1 < t<T-1)\\ P(z_{-\{1,T-1,T\}}|z_{1},\alpha)&(t=T-1)\\ P(z_{-\{1,T\}}|z_{1},\alpha)&(t=T)\\ \end{array} \right., \end{array} $$
(60)
$$\begin{array}{@{}rcl@{}} &&{{\Psi}^{3}_{t}}(z_{1};\gamma)= \left\{ \begin{array}{ll} 1&(t=1)\\ P(z_{1}|\gamma)&(1 < t \le T)\\ \end{array} \right., \end{array} $$
(61)

where y −{t}=(y 1:t−1,y t+2:T ), z −{t}=(z 1:t−1,z t+2:T ), and z −{1,t,t+1}=(z 2:t−1,z t+2:T ). By using this setting, we can decrease (drastically) computational cost for the full conditional distribution P(z t |z −{t},y,ϕ).

More concretely, we can write (42)

$$ \frac{P(y,z|\phi)}{{\Psi}_{t}(z_{-\{t\}},y; \phi)} =\frac{P(y|z, \beta)}{{{\Psi}^{1}_{t}}(y_{-\{t\}},z_{-\{t\}};\beta)} \frac{P(z_{-\{1\}}|z_{1},\alpha)}{{{\Psi}^{2}_{t}}(z_{-\{t\}}; \alpha)} \frac{P(z_{1}|\gamma)}{{{\Psi}_{t}^{3}}(z_{1};\gamma)}. $$
(62)

The computations of these three terms \(\frac {P(y|z, \beta )}{{{\Psi }^{1}_{t}}(y_{-\{t\}},z_{-\{t\}};\beta )}\), \(\frac {P(z_{-\{1\}}|z_{1},\alpha )}{{{\Psi }^{2}_{t}}(z_{-\{t\}}; \alpha )}\), and \(\frac {P(z_{1}|\gamma )}{{{\Psi }^{3}_{t}}(z_{1};\gamma )}\) are much cheaper than those of the terms P(y|z,β), P(z −{1}|z 1,α), and P(z 1|γ) for an evaluation of P(y,z|ϕ).

For the later arguments, let the function n i (⋅) be defined as

$$ n_{i}(\zeta)= \sum\limits_{\tau \in {\mathcal T}} I(\zeta_{\tau}=i) $$
(63)

for a discrete sequence \(\zeta =(\zeta _{\tau })_{\tau \in {\mathcal T}}\). The function n i k (⋅) is defined as

$$ n_{ik}\left(\zeta^{1}, \zeta^{2}\right)= \sum\limits_{\tau \in {\mathcal T}} I\left(\zeta^{1}_{\tau}=i\right)I\left(\zeta^{2}_{\tau}=k\right) $$
(64)

for two discrete sequences \(\zeta ^{1}=(\zeta ^{1}_{\tau })_{\tau \in \mathcal T}\) and \(\zeta ^{2}=(\zeta ^{2}_{\tau })_{\tau \in \mathcal T}\). The function ν i j (⋅) is defined by

$$ \nu_{ij}(\zeta)= \sum\limits_{\tau \in \{{\mathcal T}| (\tau -1) \in \mathcal T\}} I(\zeta_{\tau-1}=i)I(\zeta_{\tau}=j) $$
(65)

for a discrete sequence \(\zeta =(\zeta _{\tau })_{\tau \in \mathcal T}\).

  1. 1.

    When t=1

    $$\begin{array}{llll} &P\left(z_{t}|z_{-\{t\}},y, \phi \right) \propto \frac{\gamma^{1}_{z_{1}}}{\gamma^{1}_{z_{1}} + \gamma^{2}_{z_{1}}} \cdot \left( \prod\limits_{i=1}^{z_{1}-1} \frac{{\gamma_{i}^{2}} }{{\gamma_{i}^{1}} + {\gamma_{i}^{2}} }\right) \\ & \quad\times \frac{\nu_{z_{1}z_{2}}(z_{-\{1\}})+\alpha_{z_{1}z_{2}}^{1}}{{\sum}_{j^{\prime}=z_{2}}^{U} \nu_{z_{1}j^{\prime}}(z_{-\{1\}})+\alpha_{z_{1}z_{2}}^{1} + \alpha_{z_{1}z_{2}}^{2}} \cdot \left(\prod\limits_{j=1}^{z_{2}-1} \frac{{\sum}_{j^{\prime}=j+1}^{U} \nu_{z_{1}j^{\prime}}(z_{-\{1\}})+\alpha_{z_{1}j}^{2}} {{\sum}_{j^{\prime}=j}^{U} \nu_{z_{1}j^{\prime}}(z_{-\{1\}})+\alpha_{z_{1}j}^{1} + \alpha_{z_{1}j}^{2} } \right)\\ & \quad\times \frac{n_{z_{1}e_{1}}(z_{-\{1\}}, e_{-\{1\}})+\beta_{e,z_{1}e_{1}}} {n_{z_{1}}(z_{-\{1\}})+{\sum}_{m=1}^{M+1} \beta_{e,z_{1}k}} \cdot \left(\prod\limits_{l=1}^{L} \frac{n_{z_{1}f_{l,1}}(z_{-\{1\}},f_{l,-\{1\}})+\beta_{f_{l},z_{1}f_{l,1}}} { n_{z_{1}}(z_{-\{1\}})+ {\sum}_{k=1}^{K_{l}} \beta_{f_{l},z_{1}k} }\right). \end{array} $$
  2. 2.

    When 1<t<T and z t z t−1,

    $$\begin{array}{lllll} &P\left( z_{t}|z_{-\{t\}},y, \phi \right) \\ &\quad\propto \frac{\nu_{z_{t-1}z_{t}}(z_{-\{t\}})+\alpha_{z_{t-1}z_{t}}^{1}} {{\sum}_{j^{\prime}=z_{t}}^{U} \nu_{z_{t-1}j^{\prime}}(z_{-\{t\}})+\alpha_{z_{t-1}z_{t}}^{1} + \alpha_{z_{t-1}z_{t}}^{2}} \cdot \left( \prod\limits_{j=1}^{z_{t}-1} \frac{{\sum}_{j^{\prime}=j+1}^{U} \nu_{z_{t-1}k}(z_{-\{t\}})+\alpha_{z_{t-1}j}^{2}} {{\sum}_{j^{\prime}=j}^{U} \nu_{z_{t-1}j^{\prime}}(z_{-\{t\}})+\alpha_{z_{t-1}j}^{1} + \alpha_{z_{t-1}j}^{2}} \right) \\ & \quad\times \frac{\nu_{z_{t}z_{t+1}}(z_{-\{t\}})+\alpha_{z_{t}z_{t+1}}^{1}} {{\sum}_{j^{\prime}=z_{t+1}}^{U} \nu_{z_{t}j^{\prime}}(z_{-\{t\}})+\alpha_{z_{t}z_{t+1}}^{1} + \alpha_{z_{t}z_{t+1}}^{2}} \cdot \left( \prod\limits_{j=1}^{z_{t+1}-1} \frac{{\sum}_{j^{\prime}=j+1}^{U} \nu_{z_{t}j^{\prime}}(z_{-\{t\}})+\alpha_{z_{t}j}^{2}} {{\sum}_{j^{\prime}=j}^{U} \nu_{z_{t}j^{\prime}}(z_{-\{t\}})+\alpha_{z_{t}j}^{1} + \alpha_{z_{t}j}^{2}} \right)\\ & \quad\times \frac{n_{z_{t}e_{t}}(z_{-\{t\}},e_{-\{t\}})+\beta_{e,z_{t}e_{t}}} {n_{z_{t}}(z_{-\{t\}})+{\sum}_{m=1}^{M+1} \beta_{e,z_{t}m}} \cdot \left( \prod\limits_{l=1}^{L} \frac{n_{z_{t}f_{l,t}}(z_{-\{t\}},f_{l,-\{t\}})+\beta_{f_{l},z_{t}f_{l,t}}} {n_{z_{t}}(z_{-\{t\}})+{\sum}_{k=1}^{K_{l}} \beta_{f_{l},z_{t}k}} \right). \end{array} $$
  3. 3.

    When 1<t<T, z t =z t−1, and z t+1<z t ,

    $$\begin{array}{lllll} &P\left( z_{t}|z_{-\{t\}},y, \phi \right) \\ &\quad\propto\left(\prod\limits_{j=1}^{z_{t+1}-1} \frac{{\sum}_{j^{\prime}=j+1}^{U} \nu_{z_{t}j^{\prime}}(z_{-\{t\}})+ \alpha_{z_{t}j}^{2}} {{\sum}_{j^{\prime}=j}^{U} \nu_{z_{t}j^{\prime}}(z_{-\{t\}})+ \alpha_{z_{t}j}^{1} + \alpha_{z_{t}j}^{2}} \cdot \frac{{\sum}_{j^{\prime}=j+1}^{U} \nu_{z_{t}j^{\prime}}(z_{-\{t\}})+ 1 +\alpha_{z_{t}j}^{2}} {{\sum}_{j^{\prime}=j}^{U} \nu_{z_{t}j^{\prime}}(z_{-\{t\}})+1+\alpha_{z_{t}j}^{1} + \alpha_{z_{t}j}^{2} } \right)\\ & \quad\times \frac{\nu_{z_{t}z_{t+1}}(z_{-\{t\}})+\alpha_{z_{t}z_{t+1}}^{1}} {{\sum}_{j^{\prime}=z_{t+1}}^{U} \nu_{z_{t}j^{\prime}}(z_{-\{t\}})+\alpha_{z_{t}z_{t+1}}^{1} + \alpha_{z_{t}z_{t+1}}^{2}} \cdot \frac{{\sum}_{j^{\prime}=z_{t+1}+1}^{U} \nu_{z_{t}j^{\prime}}(z_{-\{t\}})+\alpha_{z_{t}z_{t+1}}^{2}} {{\sum}_{j^{\prime}=z_{t+1}}^{U} \nu_{z_{t}j^{\prime}}.(z_{-\{t\}})+ 1+\alpha_{z_{t}z_{t+1}}^{1} + \alpha_{z_{t}z_{t+1}}^{2}}\\ & \quad\times \left(\prod\limits_{j=z_{t+1}+1}^{z_{t}-1} \frac{{\sum}_{j^{\prime}=j+1}^{U} \nu_{z_{t}j^{\prime}}(z_{-\{t\}})+\alpha_{z_{t}j}^{2}} {{\sum}_{j^{\prime}=j}^{U} \nu_{z_{t}j^{\prime}}(z_{-\{t\}})+ \alpha_{z_{t}j}^{1} + \alpha_{z_{t}j}^{2}} \right) \cdot \frac{\nu_{z_{t}z_{t}}(z_{-\{t\}})+\alpha_{z_{t}z_{t}}^{1}} {{\sum}_{j^{\prime}=z_{t}}^{U} \nu_{z_{t}j^{\prime}}(z_{-\{t\}})+\alpha_{z_{t}z_{t}}^{1} + \alpha_{z_{t}z_{t}}^{2}} \\ & \quad\times \frac{n_{z_{t}e_{t}}(z_{-\{t\}},e_{-\{t\}})+\beta_{e,z_{t}e_{t}}} {n_{z_{t}}(z_{-\{t\}})+{\sum}_{m=1}^{M+1} \beta_{e,z_{t}m}} \cdot \left( \prod\limits_{l=1}^{L} \frac{n_{z_{t}f_{l,t}}(z_{-\{t\}},f_{l,-\{t\}})+\beta_{f_{l},z_{t}f_{l,t}}} {n_{z_{t}}(z_{-\{t\}})+{\sum}_{k=1}^{K_{l}} \beta_{f_{l},z_{t}k}} \right). \end{array} $$
  4. 4.

    When 1<t<T, z t =z t−1, and z t+1>z t ,

    $$\begin{array}{lll} &P\left( z_{t}|z_{-\{t\}},y, \phi \right) \\ &\quad\propto\left( \prod\limits_{j=1}^{z_{t}-1} \frac{{\sum}_{j^{\prime}=j+1}^{U} \nu_{z_{t}j^{\prime}}(z_{-\{t\}}) + \alpha_{z_{t}j}^{2}} {{\sum}_{j^{\prime}=j}^{U} \nu_{z_{t}j^{\prime}}(z_{-\{t\}})+ \alpha_{z_{t}j}^{1} + \alpha_{z_{t}j}^{2}} \cdot \frac{{\sum}_{j^{\prime}=j+1}^{U} \nu_{z_{t}j^{\prime}}(z_{-\{t\}})+1 +\alpha_{z_{t}j}^{2}} {{\sum}_{j^{\prime}=j}^{U} \nu_{z_{t}j^{\prime}}(z_{-\{t\}})+1+\alpha_{z_{t}j}^{1} + \alpha_{z_{t}j}^{2}} \right) \\ & \quad\times \frac{\nu_{z_{t}z_{t}}(z_{-\{t\}})+\alpha_{z_{t}z_{t}}^{1}} {{\sum}_{j^{\prime}=z_{t}}^{U} \nu_{z_{t}j^{\prime}}(z_{-\{t\}})+\alpha_{z_{t}z_{t}}^{1} + \alpha_{z_{t}z_{t}}^{2}} \cdot \frac{{\sum}_{j^{\prime}=z_{t}+1}^{U} \nu_{z_{t}j^{\prime}}(z_{-\{t\}})+\alpha_{z_{t}z_{t}}^{2}} {{\sum}_{j^{\prime}=z_{t}}^{U} \nu_{z_{t}j^{\prime}}(z_{-\{t\}})+1+\alpha_{z_{t}z_{t}}^{1} + \alpha_{z_{t}z_{t}}^{2}} \\ & \quad\times \left( \prod\limits_{j=z_{t}+1}^{z_{t+1}-1} \frac{{\sum}_{j^{\prime}=j+1}^{U} \nu_{z_{t}j^{\prime}}(z_{-\{t\}})+\alpha_{z_{t}j}^{2}} {{\sum}_{j^{\prime}=j}^{U} \nu_{z_{t}j^{\prime}}(z_{-\{t\}})+\alpha_{z_{t}j}^{1} + \alpha_{z_{t}j}^{2}}\right) \cdot \frac{\nu_{z_{t}z_{t+1}}(z_{-\{t\}})+\alpha_{z_{t}z_{t+1}}^{1}} {{\sum}_{j^{\prime}=z_{t}}^{U} \nu_{z_{t}j^{\prime}}(z_{-\{t\}})+\alpha_{z_{t}z_{t+1}}^{1} + \alpha_{z_{t}z_{t+1}}^{2}} \\ & \quad\times \frac{n_{z_{t}e_{t}}(z_{-\{t\}},e_{-\{t\}})+\beta_{e,z_{t}e_{t}}} {n_{z_{t}}(z_{-\{t\}})+{\sum}_{m=1}^{M+1} \beta_{e,z_{t}m}} \cdot \left( \prod\limits_{l=1}^{L} \frac{n_{z_{t}f_{l,t}}(z_{-\{t\}},f_{l,-\{t\}})+\beta_{f_{l},z_{t}f_{l,t}}} {n_{z_{t}}(z_{-\{t\}})+{\sum}_{k=1}^{K_{l}} \beta_{f_{l},z_{t}k}} \right). \end{array} $$
  5. 5.

    When 1<t<T, z t =z t−1, and z t+1=z t ,

    $$\begin{array}{lllll} &P\left( z_{t}|z_{-\{t\}},y, \phi \right) \\ & \quad\propto\left(\prod\limits_{j=1}^{z_{t}-1} \frac{{\sum}_{j^{\prime}=j+1}^{U} \nu_{z_{t}j^{\prime}}\left(z_{-\{t\}}\right)+\alpha_{z_{t}j}^{2}} {{\sum}_{j^{\prime}=j}^{U}\nu_{z_{t}j^{\prime}}(z_{-\{t\}})+\alpha_{z_{t}j}^{1} + \alpha_{z_{t}j}^{2}} \right.\\ &\qquad\left.\times \frac{{\sum}_{j^{\prime}=j+1}^{U} \nu_{z_{t}j^{\prime}}(z_{-\{t\}})+1+\alpha_{z_{t}j}^{2}} {{\sum}_{j^{\prime}=j}^{U} \nu_{z_{t}j^{\prime}}(z_{-\{t\}})+1+\alpha_{z_{t}j}^{1} + \alpha_{z_{t}j}^{2}} \right) \\ &\qquad \times \frac{\nu_{z_{t}z_{t}}(z_{-\{t\}})+\alpha_{z_{t}z_{t}}^{1}} { {\sum}_{j^{\prime}=z_{t}}^{U} \nu_{z_{t}j^{\prime}}(z_{-\{t\}})+\alpha_{z_{t}z_{t}}^{1} + \alpha_{z_{t}z_{t}}^{2}} \cdot \frac{\nu_{z_{t}z_{t}}(z_{-\{t\}})+1+\alpha_{z_{t}z_{t}}^{1}} {{\sum}_{j^{\prime}=z_{t}}^{U} \nu_{z_{t}j^{\prime}}(z_{-\{t\}})+1+\alpha_{z_{t}z_{t}}^{1} + \alpha_{z_{t}z_{t}}^{2}} \\ & \qquad\times \frac{n_{z_{t}e_{t}}(z_{-\{t\}},e_{-\{t\}})+\beta_{e,z_{t}e_{t}}} {n_{z_{t}}(z_{-\{t\}})+{\sum}_{m=1}^{M+1} \beta_{e,z_{t}m}} \cdot \left( \prod\limits_{l=1}^{L} \frac{n_{z_{t}f_{l,t}}(z_{-\{t\}},f_{l,-\{t\}})+\beta_{f_{l},z_{t}f_{l,t}}} {n_{z_{t}}(z_{-\{t\}})+{\sum}_{k=1}^{K_{l}} \beta_{f_{l},z_{t}k}} \right). \end{array} $$
  6. 6.

    When t=T

    $$\begin{array}{lllll} &P\left( z_{t}|z_{-\{t\}},y, \phi \right) \\ &\propto \left( \prod\limits_{j=1}^{z_{t}-1} \frac{{\sum}_{j^{\prime}=j+1}^{U} \nu_{z_{T-1}j^{\prime}}(z_{-\{T\}})+\alpha_{z_{T-1}j}^{2}} {{\sum}_{j^{\prime}=j}^{U} \nu_{z_{T-1}j^{\prime}}(z_{-\{T\}})+\alpha_{z_{T-1}j}^{1} + \alpha_{z_{T-1}j}^{2}} \cdot \frac{\nu_{z_{T-1}z_{T}}(z_{-\{T\}})+\alpha_{z_{T-1}z_{T}}^{1}} {{\sum}_{j^{\prime}=z_{T}}^{U} \nu_{z_{T-1}j^{\prime}}(z_{-\{T\}})+\alpha_{z_{T-1}z_{T}}^{1} + \alpha_{z_{T-1}z_{T}}^{2}} \right) \\ & \quad\times \frac{n_{z_{T}e_{T}}(z_{-\{T\}},e_{-\{T\}})+\beta_{e,z_{T}e_{T}}} {n_{z_{T}}(z_{-\{T\}})+{\sum}_{m=1}^{M+1} \beta_{e,z_{T}m}} \cdot \left( \prod\limits_{l=1}^{L} \frac{n_{z_{T}f_{l,T}}(z_{-\{T\}},f_{l,-\{T\}})+\beta_{f_{l},z_{T}f_{l,T}}} {n_{z_{T}}(z_{-\{T\}})+{\sum}_{k=1}^{K_{l}} \beta_{f_{l},z_{T}k}} \right). \end{array} $$

Appendix II: Derivation of MAP EM for SB-HMM

For simplicity, we present the case where the training data is a single sequence. We first note that if the state is truncated at U, the Q-function for the Stick-Breaking HMM is given by

$$\begin{array}{@{}rcl@{}} &&Q\left( \theta| \theta^{(r)}\right) = \sum\limits_{{ z}}P\left({ z}|{ y}, \theta^{(r)}\right)\log P({ y},{ z}| \theta)+\log P(\theta), \end{array} $$

where

$$\begin{array}{@{}rcl@{}} &&\sum\limits_{{ z}}P\left({ z}|{ y}, \theta^{(r)}\right)\log P({ y},{ z}| \theta)= \sum\limits_{i=1}^{U}\mu_{1}^{(r)}(i)\log \pi_{i}+ \sum\limits_{t=1}^{T-1}\sum\limits_{i=1}^{U}\sum\limits_{j=1}^{U}\epsilon_{t}^{(r)}(i,j)\log a_{ij} \\ && + \sum\limits_{l=1}^{L}\sum\limits_{t=1}^{T} \sum\limits_{i=1}^{U} \sum\limits_{k=1}^{K_{l}} \mu_{t}^{(r)}(i)I(f_{l,t}=k) \log b_{f_{l}, ik} + \sum\limits_{t=1}^{T} \sum\limits_{i=1}^{U} \sum\limits_{m=1}^{M+1} \mu_{t}^{(r)}(i)I(e_{t}=m ) \log b_{e, im}. \end{array} $$

We will discuss the state transition parameter a output probability b and initial state probability π, separately.

  • Parameters π

    In the Q-function, those terms that depend on π reads:

    $$\begin{array}{@{}rcl@{}} F(\pi) = \sum\limits_{i=1}^{U}\mu_{1}^{(r)}(i)\log \pi_{i} + \log P(\pi). \end{array} $$
    (66)

    We rewrite (66) in terms of V π . By noting that V π,U =1, we have

    $$\begin{array}{@{}rcl@{}} F(V_{\pi}) &=& \mu^{(r)}_{1}(1) \log V_{\pi,1} + \sum\limits_{i=2}^{U-1} \mu^{(r)}_{1}(i) \left( \log V_{\pi,i} + \sum\limits_{i^{\prime}=1}^{i-1} \log (1-V_{\pi,i^{\prime}})\right) \\ && \hspace{2cm} + \sum\limits_{i=1}^{U-1} \left({\gamma^{1}_{i}} -1\right)\log V_{\pi,i} + \sum\limits_{i=1}^{U-1} \left({\gamma^{2}_{i}} -1\right) \log(1-V_{\pi,i}) \\ &=& \sum\limits_{i=1}^{U-1} \left(\mu^{(r)}_{1}(i)+{\gamma^{1}_{i}}-1 \right)\log V_{\pi,i} \\ && \hspace{2cm} + \sum\limits_{i=1}^{U-1} \left( \sum\limits_{i^{\prime}=i+1}^{U}\mu^{(r)}_{1}(i^{\prime}) + {\gamma^{2}_{i}}-1 \right) \log(1-V_{\pi,i}). \end{array} $$

    Let

    $$\begin{array}{@{}rcl@{}} A_{i}^{(r)}=\mu_{1}^{(r)}(i)+{\gamma^{1}_{i}}-1,\hspace{0.5cm} B_{i}^{(r)}=\sum\limits_{i^{\prime}=i+1}^{U}\mu_{1}^{(r)}(i^{\prime})+{\gamma^{2}_{i}}-1 \end{array} $$

    for i=1, ⋯, U−1. Then we have

    $$\begin{array}{@{}rcl@{}} \frac{\partial}{\partial V_{\pi,i} } F(V_{\pi}) &=& \sum\limits_{i^{\prime}=1}^{U-1} \frac{\partial}{\partial V_{\pi,i}} \left(A_{i^{\prime}}^{(r)}\log V_{\pi,i^{\prime}}+B_{i^{\prime}}^{(r)} \log (1- V_{\pi,i^{\prime}}) \right)\\ &=&\frac{A_{i}^{(r)}}{V_{\pi,i}}-\frac{B_{i}^{(r)}}{1-V_{\pi,i}} =\frac{A_{i}^{(r)}-\left(A_{i}^{(r)}+B_{i}^{(r)}\right)V_{\pi,i}}{V_{\pi,i}(1-V_{\pi,i})} \end{array} $$
    (67)

    for i=1, ⋯, U−1. By setting \(\frac {\partial }{\partial V_{\pi ,i} } F(V_{\pi })=0\), we have

    $$\begin{array}{@{}rcl@{}} V_{\pi,i}&=&\frac{A_{i}^{(r)}}{A_{i}^{(r)}+B_{i}^{(r)}}, \end{array} $$

    which implies

    $$\begin{array}{@{}rcl@{}} V_{\pi,i} = \frac{\mu_{1}^{(r)}(i)+{\gamma^{1}_{i}}-1}{{\sum}_{i^{\prime}=i}^{U}\mu^{(r)}_{1}(i^{\prime})+{\gamma^{1}_{i}}+{\gamma^{2}_{i}}-2} \end{array} $$
    (68)

    for i=1, ⋯, U−1. Note V π,i satisfies 0<V π,i <1, since we selected hyperparameters \({\gamma ^{1}_{i}}\) and \({\gamma ^{2}_{i}}\) to satisfy \({\gamma ^{1}_{i}}+{\gamma ^{2}_{i}} > 2\) for i=1, ⋯, U−1.

  • Parameters

    a An update formula for state transition parameter a can be derived in a manner similar to that for π:

    $$\begin{array}{@{}rcl@{}} V_{a,ij} = \frac{{\sum}_{t=1}^{T-1}\epsilon_{t}^{(r)}(i,j)+\alpha^{1}_{ij}-1}{ {\sum}_{t=1}^{T-1}{\sum}_{j^{\prime}=j}^{U}\epsilon_{t}^{(r)}(i,j^{\prime})+\alpha^{1}_{ij}+\alpha^{2}_{ij}-2} \end{array} $$
    (69)

    for i=1, ⋯, U and j=1, ⋯, U−1. In this paper, we selected hyperparameters \(\alpha ^{1}_{ij}\) and \(\alpha ^{2}_{ij}\) to satisfy \(\alpha ^{1}_{ij}+\alpha ^{2}_{ij} > 2\) for i=1, ⋯, U and j=1, ⋯, U−1.

  • Parameters b

    Noticing that the prior for b is a finite-dimensional Dirichlet, we consider the terms containing \(b_{f_{l}}\):

    $$\begin{array}{@{}rcl@{}} \begin{array}{lll} F(b_{f_{l}}, \lambda) &=& \sum\limits_{t=1}^{T} \sum\limits_{i=1}^{U} \sum\limits_{k=1}^{K_{l}} \mu_{t}^{(r)}(i) I(f_{l,t}=k) \log b_{f_{l}, ik} \\ &&+ \sum\limits_{i=1}^{U}\sum\limits_{k=1}^{K_{l}} (\beta_{f_{l}, ik}-1) \log b_{f_{l}, ik} - \lambda \left( \sum\limits_{k=1}^{K_{l}} b_{f_{l}, ik}-1\right) , \end{array} \end{array} $$
    (70)

    where λ is a Lagrange multiplier.Footnote 6

Taking the derivative of this function with respect to \(b_{f_{l}, ik}\) yields

$$\begin{array}{@{}rcl@{}} \frac{\partial}{\partial b_{f_{l},ik}} F(b_{f_{l}}, \lambda) &=& \sum\limits_{t=1}^{T} \frac{\mu_{t}^{(r)}(i)I(f_{l,t}=k) + \beta_{f_{l}, ik}-1 }{b_{f_{l}, ik}} - \lambda \\ \end{array} $$

for i=1, ⋯, U, k=1, ⋯, K l , and l=1⋯L. By setting \(\frac {\partial }{\partial b_{f_{l},ik}} F(b_{f_{l}}, \lambda )=0\), we have

$$\begin{array}{@{}rcl@{}} b_{f_{l}, ik} &=&\frac{1}{\lambda} \left(\sum\limits_{t=1}^{T} \mu_{t}^{(r)}(i)I(f_{l,t}=k) + \beta_{f_{l},ik}-1 \right) \end{array} $$

for i=1, ⋯, U, k=1, ⋯, K l , and l=1⋯L. It follows from the constraints on \(b_{f_{l}, ik}\) that

$$\begin{array}{@{}rcl@{}} \sum\limits_{k=1}^{K_{l}}b_{f_{l}, ik} &=& \frac{1}{\lambda} \left( \sum\limits_{t=1}^{T}\sum\limits_{k=1}^{K_{l}} \mu_{t}^{(r)}(i)I(f_{l,t}=k) + \sum\limits_{k=1}^{K_{l}}(\beta_{f_{l},ik}-1) \right) = 1 \end{array} $$

for i=1, ⋯, U and l=1⋯L. Then we have

$$\begin{array}{@{}rcl@{}} \lambda &=& \sum\limits_{t=1}^{T} \mu_{t}^{(r)}(i) + \sum\limits_{k=1}^{K_{l}}\beta_{f_{l},ik}-K_{l} \end{array} $$

for i=1, ⋯, U and l=1⋯L. Therefore, the update formula for \(b_{f_{l},ik}\) is given by

$$\begin{array}{@{}rcl@{}} b_{f_{l},ik} = \frac{{\sum}_{t=1}^{T} \mu_{t}^{(r)}(i)I(f_{l,t}=k) + \beta_{f_{l},ik}-1}{{\sum}_{t=1}^{T} \mu_{t}^{(r)}(i) + {\sum}_{k^{\prime}=1}^{K_{l}}\beta_{f_{l}, ik^{\prime}}- K_{l}} \end{array} $$
(71)

for i=1, ⋯, U, k=1, ⋯, K l , and l=1⋯L.

An update formula for b e is derived in a similar manner as

$$\begin{array}{@{}rcl@{}} b_{e,im} = \frac{{\sum}_{t=1}^{T} \mu_{t}^{(r)}(i)I(e_{t}=m) + \beta_{e,im}-1}{{\sum}_{t=1}^{T} \mu_{t}^{(r)}(i) + {\sum}_{m^{\prime}=1}^{M+1}\beta_{e,im^{\prime}}- M-1}. \end{array} $$
(72)

for i=1, ⋯, U and m=1, ⋯, M+1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, G., Hatakeyama, H., Ota, K. et al. Predicting viewer-perceived activity/dominance in soccer games with stick-breaking HMM using data from a fixed set of cameras. Multimed Tools Appl 75, 3081–3119 (2016). https://doi.org/10.1007/s11042-014-2425-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-014-2425-0

Keywords

Navigation