Multimedia Tools and Applications

, Volume 75, Issue 4, pp 2051–2065 | Cite as

Distributed video coding with limited feedback requests

  • Yonghong Kuo
  • Pan Gao
  • Jian Chen


Traditional decoder rate control (DRC) distributed video coding (DVC) can dynamically adjust the amount of parity information through feedback channel, which guarantees that minimum parity information should be transmitted from the encoder to the decoder. However, frequent feedback requests increase system complexity and video transmission delay. To solve the problems caused by frequent requests, this paper proposes a new feedback control algorithm which purposefully requests for more parity information through the feedback channel. To achieve a good rate distortion (RD), the proposed DVC architecture also performs frame classification, side information refinement and correlation noise model refinement. Frame classification module makes the judgment whether the current frame worth coding according to the motion intensity, which reduces the complexity of DVC system. Side information and correlation noise model refinement are performed based on correctly decoded bit-planes, which contributes to decreasing the error rate of the decoded frame. Experimental results show that the new feedback control algorithm significantly decreases the number of feedback requests. A good rate RD performance is also achieved with only one request. The proposed architecture has a better RD performance than encoder rate control (ERC) systems, and it also achieves a similar performance to DRC systems without feedback constraints in literature.


Distributed video coding Feedback control Side information refinement Correlation noise model refinement 



This work was supported by the National Science Foundation China under grant 61340033 and the 111 Project of China (B08038).


  1. 1.
    Artigas X. and Torres L. (2005) Improved signal reconstruction and return channel suppression in distributed video coding systems. In: Proc. International Symposium Electronics in Marine (ELMAR), Zadar, Croatia, pp 53–56Google Scholar
  2. 2.
    Artigas X, Ascenso J, Dalai M, Klomp S, Kubasov D, Ouaret M (2007) The DISCOVER codec: architecture, techniques and evaluation. In: Proceedings of Picture Coding Symposium (PCS ’07). Lisboan, Portugal, pp 6–9Google Scholar
  3. 3.
    Ascenso J, Pereira F (2008) Advanced side information creation techniques and framework for Wyner-Ziv video coding. J Vis Commun Image Represent Spec Issue Res Aware Adapt Video Streaming 19(8):600–613CrossRefGoogle Scholar
  4. 4.
    Ascenso J, Brites C, and Pereira F (2005) Improving frame interpolation with spatial motion smoothing for pixel domain distributed video coding. In: EURASIP Conference on Speech and Image Processing, Multimedia Communications and Services (EC-SIPMCS), Smolenice, Slovak RepublicGoogle Scholar
  5. 5.
    Ascenso J, Brites C, Pereira F (2006) Content adaptive Wyner-Ziv video coding driven by motion activity. In: IEEE International Conference on Image Processing (ICIP). Atlanta, GA, USA, pp 605–608Google Scholar
  6. 6.
    Brites C, Pereira F (2011) An efficient encoder rate control solution for transform domain Wyner-Ziv video coding. IEEE Trans Circ Syst VideoTechnol 21(9):1278–1292CrossRefGoogle Scholar
  7. 7.
    Brites C, Ascenso J, Pereira F (2006) Modeling correlation noise statistics at decoder for pixel based Wyner-Ziv video coding. In: Picture Coding Symposium (PCS). Beijing, China, pp 1–6Google Scholar
  8. 8.
    Deligiannis N, Barbarien J, Jacobs M, Munteanu A, Skodras A, Schelkens P (2012) Side-information-dependent correlation channel estimation in hash-based distributed video coding. IEEE Trans Image Process 21(4):1934–1949CrossRefMathSciNetGoogle Scholar
  9. 9.
    Esmaili GR, Cosman P (2009) CorrelationNoise classification based on matching success for transform domain Wyner-Ziv video coding. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Taipei, Taiwan, pp 801–804Google Scholar
  10. 10.
    Fan X, Au OC, Cheung NM (2009) Adaptive correlation estimation for general Wyner-Ziv video coding. In: IEEE International Conference on Image Processing (ICIP). Cairo, Egypt, pp 1409–1412Google Scholar
  11. 11.
    Huang X, Brites C, Ascenso J, Pereira F, Forchhammer S (2009) Distributed video coding with multiple side information. In: Picture Coding Symposium (PCS). Chicago, IL, USA, pp 1–4Google Scholar
  12. 12.
    Huihui Bai, Anhong Wang, Yao Zhao, Jeng-Shyang Pan and Ajith Abraham (2011) Distributed multiple description coding - principles, algorithms and systems. In: Springer-Verlag London Limited, ISBN 978-1-4471-2247-0Google Scholar
  13. 13.
    Kubasov D, Guillemot C (2006) Mesh-based Motion-compensated interpolation for side information extraction in distributed video coding. In: IEEE International Conference on Image Processing (ICIP). Atlanta, GA, USA, pp 261–264Google Scholar
  14. 14.
    Liang Z, Zhen Y, Zhen Y, Joel JPC R (2014) Distributed wireless video scheduling with delayed control information. IEEE Trans Circ Syst Video Technol 24(5):889–901CrossRefGoogle Scholar
  15. 15.
    Martínez JL, Fernández-Escribano G, Kalva H, Weerakkody WARJ, Fernando WAC, Garrido A (2008) Feedback free DVC architecture using machine learning. In: IEEE International Conference on Image Processing (ICIP). San Diego, CA, USA, pp 1140–1143Google Scholar
  16. 16.
    Martins R, Brites C, Ascenso J, Pereira F (2009) Refining side information for improved transform domain Wyner-Ziv video coding. IEEE Trans Circ Systes Video Technol 19(9):1327–1341Google Scholar
  17. 17.
    Morbée M, Prades-Nebot J, Pizurica A, and Philips W (2007) Rate allocation algorithm for pixel-domain distributed video coding without feedback channel. In: Proc. IEEE ICASSP, pp. 521–524Google Scholar
  18. 18.
    Sheng T, Zhu X, Hua G, Guo H, Zhou J, Chen CW (2010) Feedback-free rate-allocation scheme for transform domain Wyner-Ziv video coding. Multimedia Systems 16(2):127–137CrossRefGoogle Scholar
  19. 19.
    Slepian D, Wolf JK (1973) Noiseless coding of correlated information sources. IEEE Trans Inf Theory 19(4):471–480CrossRefMathSciNetMATHGoogle Scholar
  20. 20.
    Slowack J, Skorupa J, Deligiannis N, Lambert P, Munteanu A, Van de Walle R (2012) Distributed video coding with feedback constraints. IEEE Trans Circ Systems Video Technol 22(7):1014–1026CrossRefGoogle Scholar
  21. 21.
    Taieb MH, Chouinard J-Y, Wang D, Loukhaoukha K, Huchet G (2012) Progressive coding and side information updating for distributed video coding. J Inf Hiding Multimedia Signal Proc 3(1):1–11Google Scholar
  22. 22.
    Weerakkody WARJ, Fernando WAC, Kondoz AM (2009) Enhanced reconstruction algorithm for unidirectional distributed video coding. IET Image Process 3(6):329–334CrossRefGoogle Scholar
  23. 23.
    Wyner AD, Ziv J (1976) The rate-distortion function for source coding with side information at the decoder. IEEE Trans Inf Theory 22(1):1–10CrossRefMathSciNetMATHGoogle Scholar
  24. 24.
    Xue Z, Anhong W, Bing Z, Lei L (2014) Adaptive distributed compressed video sensing. J Inf Hiding Multimedia Signal Proc 5(1):98–106Google Scholar
  25. 25.
    Ye S, Ouaret M, Dufaux F, Ebrahimi T (2009) Improved side information generation for distributed video coding by exploiting spatial and temporal correlations. EURASIP Journal on Image and Video Processing: 683510 (15 pp.)Google Scholar
  26. 26.
    Zhou L, Chen H-H (2011) On Distributed multimedia scheduling with constraint control channels. IEEE Trans Multimedia 13(5):1040–1051CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of Telecommunications EngineeringXidian UniversityXi’anChina

Personalised recommendations