Multimedia Tools and Applications

, Volume 74, Issue 19, pp 8685–8701 | Cite as

A statistical reduced-reference method for color image quality assessment

  • Mounir Omari
  • Mohammed El Hassouni
  • Abdelkaher Ait Abdelouahad
  • Hocine Cherifi


Although color is a fundamental feature of human visual perception, it has been largely unexplored in the reduced-reference (RR) image quality assessment (IQA) schemes. In this paper, we propose a natural scene statistic (NSS) method, which efficiently uses this information. It is based on the statistical deviation between the steerable pyramid coefficients of the reference color image and the degraded one. We propose and analyze the multivariate generalized Gaussian distribution (MGGD) to model the underlying statistics. In order to quantify the degradation, we develop and evaluate two measures based respectively on the Geodesic distance between two MGGDs and on the closed-form of the Kullback Leibler divergence. We performed an extensive evaluation of both metrics in various color spaces (RGB, HSV, CIELAB and YCrCb) using the TID 2008 benchmark and the FRTV Phase I validation process. Experimental results demonstrate the effectiveness of the proposed framework to achieve a good consistency with human visual perception. Furthermore, the best configuration is obtained with CIELAB color space associated to KLD deviation measure.


Reduced reference image quality assessment Steerable pyramid Color spaces Multivariate generalized Gaussian distribution Kullback Leibler distance Geodesic distance 



This work has been supported by the project CNRS-CNRST STIC 02/2014.


  1. 1.
    Abramowitz M, Stegun I (1965) Handbook of Mathematical Functions. Dover Publications, New YorkGoogle Scholar
  2. 2.
    CIE Publ. 15-2004, 3 Edition, Colorimetry. (CIE Central Bureau, Rd Vienna, 2004)Google Scholar
  3. 3.
    Color Science (1982) Concepts and methods, quantitative data and formulae. Wyszecki and Stiles. WileyGoogle Scholar
  4. 4.
    Decherchi S, Gastaldo P, Redi JA, Zunino R (2013) E Cambria: circular-ELM for the reduced-reference assessment of perceived image quality neurocomputing 102:78–89Google Scholar
  5. 5.
    Fang KT, Kotz S, Ng KW (1990) Symmetric multivariate and related distributions, monographs on statistics and applied probability, vol 36. Chapman and Hall, New YorkCrossRefGoogle Scholar
  6. 6.
    He L, Wang D, Li X, Tao D, Gao X, Gao F (2012) Color fractal structure model for reduced-reference colorful image quality assessment. ICONIP 2:401–408Google Scholar
  7. 7., VQEG RRNR-TV Group TEST PLAN, Draft version 1.7, 2004.6.21[EB/OL], 2005.1.10
  8. 8.
    Li Q, Wang Z (2009) Reduced-reference image quality assessment using divisive normalization-based image representation. IEEE J Sel Topics Signal Process 3:202–211CrossRefGoogle Scholar
  9. 9.
    Omari M, Abdelouahad AA, El Hassouni M, Cherifi H (2013) Color image quality assessment measure using multivariate generalized gaussian distribution. SITIS:195–200Google Scholar
  10. 10.
    Ponomarenko N, Carli M, Lukin V, Egiazarian K, Astola J, Battisti F (2008) Color image database for evaluation of image quality metrics. In: Int. workshop on multimedia signal processing. AustraliaGoogle Scholar
  11. 11.
    Redi J, Gastaldo PI, Heynderickx I, Zunino R (2010) Color distribution information for the reduced-reference assessment of perceived image quality. IEEE Trans Circ Syst Video Technol 20(12):1745–1756CrossRefGoogle Scholar
  12. 12.
    Sheikh H, Wang Z, Cormack L, Bovik A (2005) LIVE image quality assessment database. Retrieved from
  13. 13.
    Simoncelli EP, Freeman WT, Adelson EH, Heeger DJ (1992) Shiftable multi-scale transforms. IEEE Trans Inf Theory 38(2):587–607MathSciNetCrossRefGoogle Scholar
  14. 14.
    Soundararajan R, Bovik AC (2012) RRED indices: reduced reference entropic differencing for image quality assessment. IEEE Trans Image Process 21(2):517–526MathSciNetCrossRefGoogle Scholar
  15. 15.
    Verdoolaege G, Scheunders P (2011) Geodesics on the manifold of multivariate generalized gaussian distributions with an application to multicomponent texture discrimination. Int J Comput Vis 95(3):265–286CrossRefGoogle Scholar
  16. 16.
    Verdoolaege G., Rosseel Y, Lambrechts M, Scheunders P (2009) Wavelet-based colour texture retrieval using the kullback-leibler divergence between bivariate generalized Gaussian models. ICIP:265–268Google Scholar
  17. 17.
    Wang Z, Simoncelli E (2005) Reduced-reference image quality assessment using a Wavelet-domain natural image statistic model. In: Proceedings of SPIE 5666 (human vision and electronic imaging X), pp 149–159Google Scholar
  18. 18.
    Wang Z, Wu G, Sheikh HR, Simoncelli EP, Yang EH, Bovik AC (2006) Quality-aware images. IEEE Trans Image Process 15(5):1680–1689CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mounir Omari
    • 1
  • Mohammed El Hassouni
    • 1
  • Abdelkaher Ait Abdelouahad
    • 2
  • Hocine Cherifi
    • 3
  1. 1.LRIT URAC 29, University Mohammed VRabatMorocco
  2. 2.University Ibn ZohrAgadirMorocco
  3. 3.Laboratoire Electronique, Informatique et Image (Le2i) UMR 6306 CNRSUniversity of BurgundyDijonFrance

Personalised recommendations