Skip to main content
Log in

An interval type-2 T-S fuzzy classification system based on PSO and SVM for gender recognition

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, an interval type-2 Takagi-Sugeno fuzzy classification system (IT2T-SFCS) learned by particle swarm optimization (PSO) and support vector machine (SVM) for antecedent and consequent parameters optimization is proposed. The IT2T-SFCS is constructed by fuzzy if-then rules whose antecedents are interval type-2 fuzzy sets and consequents are linear state equations. The antecedents of IT2T-SFCS use the fuzzy iterative self-organizing data analysis technique (ISODATA) and PSO to learn and calculate the optimal centers and the uncertain widths of the Gaussian membership functions. Consequent parameters in IT2T-SFCS are learned through SVM for the purpose of achieving higher generalization ability. The proposed IT2T-SFCS is able to directly handle uncertainties, minimize the effects of uncertainties and get the better generalization performance, which inherits the benefits of interval type-2 T-S fuzzy system and SVM. For demonstration, IT2T-SFCS is used as a classifier in gender recognition. The experimental results show that the performance of the proposed IT2T-SFCS is superior to that of the previous mainstream classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P Bartlett and JS Taylor (1999) Generalization performance of support vector machines and other pattern classifiers, advances in kernel methods, support vector learning, The MIT Press, 43–55

  2. Belhumeur PN, Hespanha JP, Kriegman DJ (1996) Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. Comput Vis ECCV ′96 Lect Notes Comput Sci 1064:43–58

    Article  Google Scholar 

  3. Birge B (2003) A particle swarm optimization toolbox for Matlab, IEEE Swarm Intell Symp Proc, pp. 182–186, Apr

  4. Castillo O (2012) Optimization of an interval type 2 fuzzy controller for an autonomous mobile robot using the particle swarm optimization algorithm. Type 2 Fuzzy Log Intell Control Appl Stud Fuzziness Soft Comput 272:173–180

    Article  Google Scholar 

  5. Castillo O, Melin P (2008) A new approach for plant monitoring using type-2 fuzzy logic and fractal theory. Type 2 Fuzzy Log Theory and Appl Stud in Fuzziness Soft Comput 223:187–202

    Article  Google Scholar 

  6. Chih-Chung C and Chih-Jen L (2011) LIBSVM: a library for support vector machines, ACM Trans Intell Syst Technol, Vol.2, no. 3

  7. Chen Y, Wang JZ (2003) Support vector learning for fuzzy rule-based classification systems. IEEE Trans Fuzzy Syst 11(6):716–728

    Article  Google Scholar 

  8. Chiang JH, Hao PY (2004) Support vector learning mechanism for fuzzy rule-based modeling: a new approach. IEEE Trans Fuzzy Syst 12(1):1–12

    Article  Google Scholar 

  9. Cristianini N, Taylor JS (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge Univ. Press, Cambridge

    Book  Google Scholar 

  10. Pankaj DS, Wilscy M (2011) Face recognition using fuzzy neural network classifier. Adv Parallel Distrib Comput Commun Comput Inform Sci 203:53–62

    Google Scholar 

  11. Garibaldi JM, Ozen T (2007) Uncertain fuzzy reasoning: a case study in modelling expert decision making. IEEE Trans Fuzzy Syst 15(1):16–30

    Article  Google Scholar 

  12. He X, Cai D, Yan S, Zhang H-J (2005) Neighborhood preserving embedding. Proc Tenth IEEE Int Conf Comput Vis 2:1208–1213

    Google Scholar 

  13. JAFFE database. http://www.kasrl.org/jaffe.html

  14. Juan Carlos G, Pujol FA (2011) Feature reduction of local binary patterns applied to face recognition. Int Symp Distrib Comput Artif Intell Adv Intell Soft Comput 91:257–260

    Google Scholar 

  15. Juang CF (2002) A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms. IEEE Trans Fuzzy Syst 10(2):155–170

    Article  MathSciNet  Google Scholar 

  16. Juang C-F, Chen G-C (2012) A TS fuzzy system learned through a support vector machine in principal component space for real-time object detection. IEEE Trans Ind Electron 59(8):3309–3320

    Article  MathSciNet  Google Scholar 

  17. Juang C-F, Chiu S-H, Chang S-W (2007) A self-organizing TS-type fuzzy network with support vector learning and its application to classification problems. IEEE Trans Fuzzy Syst 15(5):998–1008

    Article  Google Scholar 

  18. Juang C-F, Chiu S-H, Shiu S-J (2007) Fuzzy system learned through fuzzy clustering and support vector machine for human skin color segmentation. IEEE Trans Syst Man Cybern Syst Hum 37(6):1077–1087

    Article  Google Scholar 

  19. Juang CF, Lin CT (1998) An on-line self-constructing neural fuzzy inference network and its applications. IEEE Trans Fuzzy Syst 6(1):12–32

    Article  Google Scholar 

  20. Karnik NN, Mendel JM, Liang Q (1999) Type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 7(6):643–658

    Article  Google Scholar 

  21. Karnik NN, Mendel JM (2001) Operations on type-2 fuzzy sets. Fuzzy Sets Syst 122(2):327–348

    Article  MathSciNet  MATH  Google Scholar 

  22. JC Kim, and SC Won (2002) New fuzzy inference system using a support vector machine, Proc. the 41st IEEE Conf Decis Control, 1349–1354, Dec

  23. Kosko B (1994) Fuzzy systems as universal approximators. Comput IEEE Trans 43(11):1329–1333

    Article  MATH  Google Scholar 

  24. CT Lin, CM Yeh and CF Hsu (2004) Fuzzy neural network classification using support vector machine, Proc. IEEE Symp Circ Syst., pp. 724–727

  25. Lin CT, Yeh CM, Liang SF, Chung JF, Kumar N (2006) Support- vector-based fuzzy neural network for pattern classification. IEEE Trans Fuzzy Syst 14(1):31–41

    Article  Google Scholar 

  26. Liu Q, Zhao Z, Li Y-X, Li Y (2012) Feature selection based on sensitivity analysis of fuzzy ISODATA. Neurocomputing 85:29–37

    Article  Google Scholar 

  27. Masood S, Hussain A, Jaffar MA, Choi TS (2013) Intelligent noise detection and filtering using neuro-fuzzy system. Multimedia Tools Appl 63(1):93–105

    Article  Google Scholar 

  28. Melin P (2013) Interval type-2 fuzzy logic in hybrid neural pattern recognition systems. Fuzziness Stud Fuzziness Soft Comput 299:435–439

    Article  Google Scholar 

  29. Mendel JM (2000) Uncertainty, fuzzy logic, and signal processing. Signal Process 80(6):913–933

    Article  MATH  Google Scholar 

  30. Mendel JM (2007) Advance in type-2 fuzzy set and systems. J Inf Sci 177(1):84–110

    Article  MathSciNet  MATH  Google Scholar 

  31. Mendel JM (2009) On answering the question “Where do I start in order to solve a new problem involving interval type-2 fuzzy sets?”. Inf Sci 179(19):3418–3431

    Article  MathSciNet  MATH  Google Scholar 

  32. Mendel JM, John RI, Liu FL (2006) Interval type-2 fuzzy logic systems made simple. IEEE Trans Fuzzy Syst 14(6):808–821

    Article  Google Scholar 

  33. Mohammad B, Melek WW, Mendel JM (2010) On the stability of interval type-2 TSK fuzzy logic control systems. IEEE Trans Syst Man Cybern Syst Hum 40(3):798–818

    Article  Google Scholar 

  34. Muni DP, Pal NR (2012) Evolution of fuzzy classifiers using genetic programming. Fuzzy Inf Eng 4(1):29–49

    Article  MathSciNet  Google Scholar 

  35. Naim S, Hagras H (2014) A type 2-hesitation fuzzy logic based multi-criteria group decision making system for intelligent shared environments. Soft Comput 18(7):1305–1319

    Article  Google Scholar 

  36. Naim S, Hagras H (2014) A type 2-hesitation fuzzy logic based multi-criteria group decision making system for intelligent shared environments. Soft Comput 18(7):1305–1319

    Article  Google Scholar 

  37. ORL database. http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

  38. Own C-M (2009) Switching between type-2 fuzzy sets and intuitionistic fuzzy sets: an application in medical diagnosis. Appl Intell 31(3):283–291

    Article  Google Scholar 

  39. Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1:33–57

    Article  Google Scholar 

  40. Patel PB, Marwala T (2012) Optimization of fuzzy inference system field classifiers using genetic algorithms and simulated annealing. Eng Appl Neural Netw Commun Comput Inf Sci 311:21–30

    Google Scholar 

  41. Liang Q, Mendel JM (2000) Interval type-2 fuzzy logic systems: theory and design. IEEE Trans Fuzzy Syst 8(5):535–550

    Article  Google Scholar 

  42. Q Liang and JM Mendel (1999) An introduction to type-2 TSK fuzzy logic systems, IEEE Int Fuzzy Syst Conf Proc, pp.1534-1539, Seoul Korea, Aug

  43. Rai P, Khanna P (2012) Gender classification techniques: a review. Adv Comput Sci Eng Appl Adv Intell Soft Comput 166:51–59

    Article  Google Scholar 

  44. Ren Q, Balazinski M, Baron L (2012) High-order interval type-2 Takagi-Sugeno-Kang fuzzy logic system and its application in acoustic emission signal modeling in turning process. Int J Adv Manuf Technol 63(9–12):1057–1063

    Article  Google Scholar 

  45. Roh SB, Ahn TC, Pedrycz W (2010) The design methodology of radial basis function neural networks based on fuzzy K-nearest neighbors approach. Fuzzy Sets Syst 161(13):1803–1822

    Article  MathSciNet  Google Scholar 

  46. Eberhart RC, Shi Y (1998) Comparison between genetic algorithms and particle swarm optimization. Evol Program VII Lect Notes Comput Sci 1447:611–616

    Article  Google Scholar 

  47. Sánchez D, Melin P (2014) Hierarchical genetic algorithms for type-2 fuzzy system optimization applied to pattern recognition and fuzzy control. Recent Adv Hybridomas Approaches Design Intell Syst Stud Comput Intell 547:19–35

    Article  Google Scholar 

  48. Smiatacz M (2013) Eigenfaces, Fisherfaces, Laplacianfaces, Marginfaces-how to face the face verification task. Proc 8th Int Conf Comput Recog Syst CORES 2013 Adv Intell Syst Comput 226:187–196

    Google Scholar 

  49. Sun Z, Wang N, Srinivasan D, Bi Y (2014) Optimal tunning of type-2 fuzzy logic power system stabilizer based on differential evolution algorithm. Int J Electr Power Energy Syst 62:19–28

    Article  Google Scholar 

  50. Vapnik V (1995) The nature of statistical learning theory. Springer, New York

    Book  MATH  Google Scholar 

  51. Weihong Z, Shunqing X (2013) Construction of Mamdani fuzzy classifier based on genetic algorithm. Intell Comput Evol Comp Adv Intell Syst Comput 180:583–590

    Google Scholar 

  52. Zeng J, Liu ZQ (2006) Type-2 fuzzy hidden Markov models and their application to speech recognition. IEEE Trans Fuzzy Syst 14(3):454–467

    Article  MathSciNet  Google Scholar 

  53. Zhao L (2010) Short-term traffic flow prediction based on interval type-2 fuzzy neural networks. Life Syst Model Intell Comput Commun Comput Inf Sci 98:230–237

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 61374194), the National Natural Science Foundation of China (No. 61403081), China Postdoctoral Science Foundation Founded Project (No. 2013 M540405), the Natural Science Foundation of Jiangsu Province (No. BK20140638), and Special Program of China Postdoctoral Science Foundation (No.2014T70454).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Lu, X., Chen, L. et al. An interval type-2 T-S fuzzy classification system based on PSO and SVM for gender recognition. Multimed Tools Appl 75, 987–1007 (2016). https://doi.org/10.1007/s11042-014-2338-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-014-2338-y

Keywords

Navigation