Skip to main content
Log in

Regularized directional feature learning for face recognition

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper presents an improved approach to face recognition, called Regularized Shearlet Network (RSN), which takes advantage of the sparse representation properties of shearlets in biometric applications. One of the novelties of our approach is that directional and anisotropic geometric features are efficiently extracted and used for the recognition step. In addition, our approach is augmented by regularization theory (RSN) in order to control the trade-off between the fidelity to the data (gallery) and the smoothness of the solution (probe). In this work, we address the challenging problem of the single training sample per subject (STSS). We compare our new algorithm against different state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahonen T, Hadid A, Pietikainen M (2006) Face description with local binary patterns: Application to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041

    Article  Google Scholar 

  2. Ben Amar C, Zaied M, Alimi MA (2005) Beta wavelets. Synthesis and application to lossy image compression. J Adv Eng Softw Elsevier Ed 36(7):459–474

    Article  MATH  Google Scholar 

  3. Belhumeur PN, Hespanha JP, Kriengman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE PAMI 19(7):711–720

    Article  Google Scholar 

  4. Bertero M (1986) Regularization methods for linear inverse problems. In: Talenti CG (ed) Inverse problems. Springer, Berlin

    Google Scholar 

  5. Bertero M, Poggio T, Torre V (1988) Ill-posed problems in early vision. Proc IEEE 76:869–889

    Article  Google Scholar 

  6. Bodmann BG, Kutyniok G, Zhuang X Gabor Shearlets. Appl Comput Harmon Anal. to appear

  7. Borgi MA, Labate D, El’arbi M, Ben Amar C (2013) Shearlet network-based sparse coding augmented by facial texture features for face recognition. ICIAP 2:611–620

    Google Scholar 

  8. Borgi MA, Labate D, El’arbi M, Ben Amar C (2014) Regularized Shearlet network for face recognition using single sample per person. In: IEEE international conference on acoustics, speech and signal processing, ICASSP2014. Firenze, Italy, pp 514–518

  9. Borgi MA, El’arbi M, Ben Amar C (2013) Wavelet Network and Geometric Features Fusion Using Belief Functions for 3D Face Recognition. CAIP 2:307–314

    MathSciNet  Google Scholar 

  10. Cevikalp H (2010) New clustering algorithms for the support vector machine based hierarchical classification. Pattern Recognit Lett 31(11):1285–1291

    Article  Google Scholar 

  11. Chien JT, Wu CC (2002) Discriminant waveletfaces and nearest feature classifiers for face recognition. IEEE Trans Pattern Anal Mach Intell 24(12):1644–1649

    Article  Google Scholar 

  12. Easley GR, Labate D (2012) Critically sampled wavelets with composite dilations. IEEE Trans Image Process 21(2):550–561

    Article  MathSciNet  Google Scholar 

  13. Easley GR, Labate D, Patel V (2012) Hyerbolic shearlets. ICIP, Orlando

    Google Scholar 

  14. Easley GR, Labate D, Patel V (2014) Directional multiscale processing of images using wavelets with composite dilations. J Math Imag Vision 48(1):13–34

  15. Georgia Tech Face Database, ftp://ftp.ee.gatech.edu/pub/users/hayes/facedb/

  16. Guo K, Lim W-Q, Labate D, Weiss G, Wilson E (2004) Wavelets with composite dilations? Electron Res Announc Amer Math Soc 10:78–87

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo K, Labate D, Lim W, Weiss G, Wilson E (2006) The theory of wavelets with composite dilations. In: Heil C (ed) Harmonic analysis and applications. Birkauser, pp 231–249

  18. Hastie T, Tibshirani R, Friedman J (2003) The elements of statistical learning. Springer Series in Statistics

  19. Heisele B, Ho P, Poggio T (2001) Face recognition with support vector machine: Global versus component-based approach. ICCV 2:688–694

    Google Scholar 

  20. Hiriart-Urruty J, Lemarechal C (1996) Convex analysis and minimization algorithms. Springer-Verlag

  21. Hsu CW, Lin CJ (2002) A comparison of methods for multiclass support vector machines. IEEE Trans Neural Networks 13(N. 2):415–425

    Article  Google Scholar 

  22. Kutyniok G, Labate D (2009) Resolution of the wavefront set using continuous shearlets. Trans Amer Math Soc 361:2719–2754

    Article  MathSciNet  MATH  Google Scholar 

  23. Laaksonen J (1997) Local subspace classifier. Proc Int Conf Artif Neural Netw

  24. Labate D, Lim W-Q, Kutyniok G, Weiss G (2005) Sparse multidimensional representation using shearlets. Wavelets XI (San Diego, CA). SPIE, Bellingham, pp 254–262

    Google Scholar 

  25. Lanitis A, Taylor CJ, Cootes TF (1997) Automatic interpretation and coding of face images using flexible models. IEEE Trans Pattern Anal Mach Intell 19(7):743–756

    Article  Google Scholar 

  26. Lee K, Ho J, Kriegman D (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698

    Article  Google Scholar 

  27. Leng L, Zhang J, Khurram Khan M, Chen X, Alghathbar K (2010) Dynamic weighted discrimination power analysis: A novel approach for face and palmprint recognition in DCT domain? Int J Phys Sci 5(17):2543–2554

    Google Scholar 

  28. Leng L, Zhang J, Xu J, Khurram Khan M, Alghathbar K (2010) Dynamic weighted discrimination power analysis in DCT domain for face and palmprint recognition. In: International Conference on Information and Communication Technology Convergence (ICTC), pp 467–471

  29. Li SZ (1998) Face recognition based on nearest linear combinations. Proc IEEE Int Conf Comput Vis Pattern Recognit

  30. Li SZ, Lu J (1999) Face recognition using nearest feature line method. IEEE Trans Neural Netw 10(2):439–443

    Article  Google Scholar 

  31. Lu J, Plataniotis Kostantinos N, Anastasios V (2003) Face recognition using LDA-based algorithms. IEEE Trans Neural Networks 14(1):195–200

    Article  Google Scholar 

  32. Lucey P, Cohn JF, Kanade T, Saragih J, Ambadar Z, Matthews I (2010) The Extended Cohn-Kande Dataset (CK+): A complete facial expression dataset for action unit and emotion-specified expression. CVPR, Workshop H CBA, pp 94–101

  33. Martinez AM (2002) Recognizing Imprecisely localized, partially occluded, and expression variant faces from a single sample per class. IEEE Trans Pattern Anal Mach Intell 24(6):748–763

    Article  Google Scholar 

  34. Martinez A, benavente R (1998) The AR face database. Technical Report 24, CVC

  35. Naseem I, Togneri R, Bennamoun M (2010) Linear regression for face recognition. IEEE Trans Pattern Anal Mach Intell 32(11):2106–2112

    Article  Google Scholar 

  36. Phillips PJ, Moon H, Rizvi SA, Rauss PJ (2000) The FERET evaluation methodology for face-recognition algorithms. IEEE Trans Pattern Anal Mach Intell 22:1090–1104

    Article  Google Scholar 

  37. Phillips PJ, Flynn PJ, Scruggs T, Bowyer KW, Chang J, Hoffman K, Marques J, Min J, Worek W (2005) Overview of the face recognition grand challenge. CVPR 1:947–954

    Google Scholar 

  38. Su Y, Shan SG, Chen XL, Gao W (2010) Adaptive generic learning for face recognition from a single sample per person. CVPR, pp 2699–2706

  39. Thomaz CE, Giraldi GA (2010) A new ranking method for Principal Components Analysis and its application to face image analysis. Image Vis Comput 28(6):902–913

    Article  Google Scholar 

  40. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Stat Methodol) 58:267–288

    MathSciNet  MATH  Google Scholar 

  41. Tikhonov AN, Arsenin VY (1977) Solutions of Ill-posed problems. W. H. Winston, Washington

    MATH  Google Scholar 

  42. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86

    Article  Google Scholar 

  43. Wolf L, Hassner T, Taigman Y (2009) Similarity scores based on background samples,? Computer Vision? ACCV, pp 88–97

  44. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  45. Yang M, Zhang L, Zhang D (2010) Metaface learning for sparse representation based face recognition. ICIP, Hong Kong, pp 1601–1604

  46. Yang M, Zhang L, Yang J, Zhang D (2011) Robust sparse coding for face recognition. CVPR, pp 625–632

  47. Yang M, Zhang L, Zhang D, Wang Shenlong (2012) Relaxed collaborative representation for pattern classification. CVPR, pp 2224–2231

  48. Yang M, Zhang L, Yang J, Zhang D (2013) Regularized robust coding for face recognition. IEEE Trans Image Process 22(5):1753–1766

    Article  MathSciNet  Google Scholar 

  49. Yi S, Labate D, Easley GR, Krim H (2009) A Shearlet approach to edge analysis and detection. IEEE Trans Image Process 18(5):929–941

    Article  MathSciNet  Google Scholar 

  50. Zhang T (2010) Analysis of multi-stage convex relaxation for sparse regularization. J Mach Learn Res 11:1081–1107

    MathSciNet  MATH  Google Scholar 

  51. Zhang T (2012) Multi-stage convex relaxation for feature selection. Bernoulli

  52. Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: which helps face recognition. ICCV, pp 471–478

Download references

Acknowledgment

The authors would like to acknowledge the financial support of this work by grants from General Direction of scientific Research (DGRST), Tunisia, under the ARUB program. D. Labate acknowledges partial support by NSF DMS 1005799 and DMS 1008900.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Anouar Borgi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borgi, M.A., El’Arbi, M., Labate, D. et al. Regularized directional feature learning for face recognition. Multimed Tools Appl 74, 11281–11295 (2015). https://doi.org/10.1007/s11042-014-2228-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-014-2228-3

Keywords

Navigation