Skip to main content
Log in

Adaptive reversible data hiding based on a local smoothness estimator

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

A novel reversible watermarking (RW) scheme based on a local smoothness estimator and multi-step embedding strategy is proposed in this paper. All the pixels are divided into four equal parts. Correspondingly, the watermark embedding process is separated into four independent steps. Thus each step is performed to embed watermark information into its corresponding image part. In each step, for each to-be-embedded pixel, a local smoothness estimator defined as the variance of its total neighbors is presented to estimate its local smoothness. An obvious advantage of introducing this estimator is that it can determine those pixels in smooth regions accurately. In fact, accurate determination means the decrease in embedding distortion. At the low embedding rate (ER), modifications induced by difference expansion (DE) are done only to those pixels located in smooth regions. Hence, the proposed method can obtain high embedding capacity while maintaining good visual quality. With ER gradually increased, adaptive embedding is employed. In adaptive embedding, for one to-be-embedded pixel, 1 or 2 bits are adaptively embedded according to the strength of relationship among all the pixels surrounding it. The experimental results demonstrate that the proposed method is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alattar AM (2004) Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans Image Process 13(8):1147–1156

    Article  MathSciNet  Google Scholar 

  2. Celik MU, Sharma G, Tekalp AM, Saber E (2005) Lossless generalized-lsb data embedding. IEEE Trans Image Process 12(2):157–160

    Google Scholar 

  3. Coltuc D, Chassery JM (2007) Very fast watermarking by reversible contrast mapping. IEEE Signal Process Lett 14(4):255–258

    Article  Google Scholar 

  4. Coltuc D (2011) Improved embedding for prediction-based reversible watermarking. IEEE Trans Inf Forensic Secur 6(3):873–882

    Article  Google Scholar 

  5. Coltuc D (2012) Low distortion transform for reversible watermarking. IEEE Trans Image Process 21(1):412–417

    Article  MathSciNet  Google Scholar 

  6. Coatrieux G, Guillou CL, Cauvin JM, Roux C (2009) Reversible watermarking for knowledge digest embedding and reliability control in medical images. IEEE Trans Inf Technol Biomed 13(2):158–165

    Article  Google Scholar 

  7. Fridrich J, Goljan M, Du R (2002) Lossless data embedding-new paradigm in digital watermarking. In EURASIP, vol 2002

  8. Hong W, Chen TS, Shiu CW (2009) Reversible data hiding for high quality images using modification of prediction errors. J Syst Softw 82(11):1833–1842

    Article  Google Scholar 

  9. Hong W (2010) An efficient prediction-and-shifting embedding technique for high quality reversible data hiding. EURASIP J Adv Signal Process

  10. Hong W, Chen T, Wu M (2013) An improved human visual system based reversible data hiding method using adaptive histogram modification. Opt Commun 291:87–97

    Article  Google Scholar 

  11. Honsinger CW, Jones PP, Rabbani M, Stoffe JC (2001) Lossless recovery of an original image containing embedded data. US patent: 6278791W

  12. Hu Y, Lee HK, Li J (2009) DE-based reversible data hiding with improved overflow location map. IEEE Trans Circuits Syst Video Technol 19(2):250–260

    Article  Google Scholar 

  13. Kamstra L, Heijmans H. JAM (2005) Reversible data embedding into images using wavelet technique and sorting. IEEE Trans Image Process 14(12):2082–2090

    Article  MathSciNet  Google Scholar 

  14. Li XL, Li J, Li B, Yang B (2013) High-fidelity reversible data hiding scheme based on pixel-value-ordering and prediction-error expansion. Signal Process 93(1):198–205

    Article  Google Scholar 

  15. Li XL, Yang B, Zeng TY (2011) Efficient reversible watermarking based on adaptive prediction-errorexpansion and pixel selection. IEEE Trans Image Process 20(12):3524–3533

    Article  MathSciNet  Google Scholar 

  16. Li XL, Zhang WM, Gui XL, Yang B (2013) A novel reversible data hiding scheme based on two-dimensional difference-histogram modification. IEEE Trans Inf Forensic Secur 8(7):1091–1100

    Article  Google Scholar 

  17. Lin S-L, Huang C-F, Liou M-H, Chen C-Y (2013) Improving histogram-based reversible information hiding by an optimal weight-based prediction scheme. Journal of Information Hiding and Multimedia Signal Processing 4(1):19–33

    Google Scholar 

  18. Luo L, Chen Z, Chen M, Zeng X, Xiong Z (2010) Reversible image watermarking using interpolation technique. IEEE Trans Inf Forensic Secur 5(1):187–193

    Article  Google Scholar 

  19. Marin O, Shih FY (2014) Reversible data hiding techniques using multiple scanning difference value histogram modification. Journal of Information Hiding and Multimedia Signal Processing 5(3):451–460

    Google Scholar 

  20. Ni Z, Shi YQ, Ansari N, Su W (2006) Reversible data hiding. IEEE Trans Circuits Syst Video Technol 16:354–362

    Article  Google Scholar 

  21. Ou B, Li XL, Zhao Y, Ni RR (2013) Reversible data hiding based on pde predictor. J Sys Softw 86(10):2700–2709

    Article  Google Scholar 

  22. Peng F, Li XL, Yang B (2014) Improved pvo-based reversible data hiding. Digit Signal Process 25:255–265

    Article  Google Scholar 

  23. Peng F, Li X, Yang B (2012) Adaptive reversible data hiding scheme based on integer transform. Signal Process 92(1):54–62

    Article  Google Scholar 

  24. Sachnev V, Kim HJ, Nam J, Suresh S, Shi YQ (2009) Reversible watermarking algorithm using sorting and prediction. IEEE Trans Circuits Syst Video Technol 19(7):989–999

    Article  Google Scholar 

  25. Tsai PY, Hu YC, Yeh HL (2009) Reversible image hiding scheme using predictive coding and histogram shifting. Signal Process 89(6):1129–1143

    Article  MATH  Google Scholar 

  26. Tai WL, Yeh CM, Chang CC (2009) Reversible data hiding based on histogram modification of pixel differences. IEEE Trans Circuits Syst Video Technol 19(6):906–910

    Article  Google Scholar 

  27. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits Syst Video Technol 13(8):890–896

    Article  Google Scholar 

  28. Thodi DM, Rodrguez JJ (2007) Expansion embedding techniques for reversible watermarking. IEEE Trans Image Process 16(3):721–730

    Article  MathSciNet  Google Scholar 

  29. Wang X, Li XL, Yang B, Guo ZM (2010) Efficient generalized integer transform for reversible watermarking. IEEE Signal Process Lett 17(6):567–570

    Article  Google Scholar 

  30. Wang X, Li XL, Yang B (2010) High capacity reversible image watermarking based on in transform. In: Proceddings of ICIP

  31. Weng SW, Zhao Y, Pan JS, Ni RR (2008) Reversible watermarking based on invariability and adjustment on pixel pairs. IEEE Signal Process Lett 45(20):1022–1023

    Google Scholar 

  32. Weng SW, Zhao Y, Ni RR, Pan JS (2009) Parity-invariability-based reversible watermarking. IET Electronics Lett 1(2):91–95

    Google Scholar 

  33. Weng SW, Chu SC, Cai N, Zhan RX (2013) Invariability of mean value based reversible watermarking. Journal of Information Hiding and Multimedia Signal Processing 4(2):90–98

    Google Scholar 

  34. Wu H-T, Huang JW (2012) Reversible image watermarking on prediction errors by efficient histogram modification. Signal Process 92(12):3000–3009

    Article  Google Scholar 

  35. Xuan GR, Yang CY, Zhen YZ, Shi YQ (2004) Reversible data hiding using integer wavelet transform and companding technique. In: Proceedings of IWDW, vol 5, pp 23–26

Download references

Acknowledgment

This work was supported in part by National NSF of China (No. 61201393, No. 61272498, No. 61001179), New Star of Pearl River on Science and Technology of Guangzhou (No. 2014J2200085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaowei Weng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, S., Pan, JS. Adaptive reversible data hiding based on a local smoothness estimator. Multimed Tools Appl 74, 10657–10678 (2015). https://doi.org/10.1007/s11042-014-2197-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-014-2197-6

Keywords

Navigation