Skip to main content
Log in

GPU-based MapReduce for large-scale near-duplicate video retrieval

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

With the exponential growth of multimedia data, people are overwhelmed with massive amount of online videos, of which Near-Duplicate Videos (NDVs) occupy a large portion. In this paper, we present a novel framework for NDV retrieval, which explores the parallel power of two promising techniques: Graphics Processing Unit (GPU) and MapReduce. With the power of the proposed framework, various key algorithms in the field of computer vision, such as K-Means clustering, bag of features, inverted file index with hamming embedding and weak geometric consistency, are applied to NDV retrieval. Experimental results on the benchmark CC_WEB_VIDEO NDV dataset demonstrate that the proposed framework can significantly speed up processing huge amounts of video repositories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Batko M, Falchi F, Lucchese C, Novak D, Perego R, Rabitti F, Sedmidubsky J, Zezula P (2010) Building a web-scale image similarity search system. Multimed Tools Appl 47 (3):599–629

    Article  Google Scholar 

  2. Cevahir A, Torii J (2012) GPU-enabled high performance online visual search with high accuracy. In: Proc. ISM’12, pp. 413–420

  3. Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clusters. Communications of the ACM - 50th anniversary issue: 1958-2008 51(1), 107–113

  4. Dong W, Wang Z, Charikar M, Li K (2008) Efficiently matching sets of features with random histograms. In:Proc. ACM MM’08, pp. 179–188

  5. Douze M, Gaidon A, Jegou H, Marszałek M, Schmid C et al (2008) INRIA-LEARs video copy detection system. In:TRECVID Workshop’08

  6. Flickr100k image dataset Online available: http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/flickr100k.html

  7. Google protobuf Online available: http://code.google.com/p/protobuf/

  8. Hadoop Online available: http://hadoop.apache.org/docs/r1.2.1/

  9. He B, Fang W, Luo Q, Govindaraju NK, Wang NT (2008) Mars: A MapReduce framework on graphics processors. In:Proc. PACT’08, pp. 260–269

  10. Hua XS, Chen X, Zhang HJ (2004) Robust video signature based on ordinal measure. In:Proc. ICIP’04, pp. 685–688

  11. Jegou H, Douze M, Schmid C (2008) Hamming embedding and weak geometric consistency for large scale image search. In:Proc. ECCV’08, pp. 304–317

  12. Jegou H, Douze M, Schmid C (2010) Improving bag-of-features for large scale image search. IJCV 87(3):316–336

    Article  Google Scholar 

  13. Karantasis KI, Polychronopoulos ED, Dimitrakopoulos GN (2010) Accelerating data clustering on GPU-based clusters under shared memory abstraction. In: Proc. CCWP’10, pp. 1–5

  14. Li Y, Crandall DJ, Huttenlocher DP (2009) Landmark classification in large-scale image collections. In: Proc. CVPR’09, pp. 1957–1964

  15. Liu J, Huang Z, Cai H, Shen HT, Ngo CW, Wang W (2013) Near-duplicate video retrieval: current research and future trends. ACM computing surveys 45(4). Article:44

  16. Lowe D (2004) Distinctive image features from scale-invariant keypoints. IJCV 60(2):91–110

    Article  Google Scholar 

  17. Mikolajczyk K, Schmid C (2004) Scale and affine invariant interest point detectors. IJCV 60(1):63–86

    Article  Google Scholar 

  18. Moise D, Shestakov D, Gudmundsson G, Amsaleg L (2013) Indexing and searching 100M images with Map-Reduce. In: Proc. ICMR’13, pp. 17–24

  19. NVIDIA CUDA Online available: https://developer.nvidia.com/

  20. Owens JD, Houston M, Luebke D, Green S, Stone JE, Phillips JC (2008) GPU computing. Proc IEEE 96(5):879–899

    Article  Google Scholar 

  21. Shalom SA, Dash M, Tue M (2008) Efficient K-Means clustering using accelerated graphics processors. In: Proc. DAWAK’08, pp. 166–175

  22. Shang L, Yang L, Wang F, Chan KP, Hua XS (2010) Real-time large scale near-duplicate web video retrieval. In: Proc. ACM MM’10, pp. 531–540

  23. Sivic J, Zisserman A (2003) Video google: A text retrieval approach to object matching in videos. In: Proc. ICCV’03, pp. 1470–1477

  24. Song J, Yang Y, Huang Z, Shen HT, Hong R (2011) Multiple feature hashing for real-time large scale near-duplicate video retrieval. In: Proc. ACM MM’11, pp. 423–432

  25. Stuart JA, Owens JD (2011) Multi-GPU MapReduce on GPU clusters. In: Proc. IPDPS’11, pp. 1068–1079

  26. Toolkit of Hessian-Affine detector Online available: http://www.robots.ox.ac.uk/~vgg/research/affine/

  27. Van De Sande KEA, Gevers T, Snoek CGM (2011) Empowering visual categorization with the GPU. IEEE Trans Multimedia 13(1):60–70

    Article  Google Scholar 

  28. Wang H, Shen Y, Wang L, Zhu F, Wang W, Cheng C (2012) Large-scale multimedia data mining using MapReduce framework. In: Proc. CloudCom’12, pp. 287–292

  29. White B, Yeh T, Lin J, Davis L (2010) Web-scale computer vision using MapReduce for multimedia data mining. In: Proc. MDMKDD’10, p. Article No.9

  30. White T (2010) Hadoop: the definitive guide, 2nd edn. O’Reilly Media, Inc

  31. Wu X, Ngo CW, Hauptmann AG, Tan HK (2009) Real-time near-duplicate elimination for web video search with content and context. IEEE Trans Multimedia 11(2):196–207

    Article  Google Scholar 

  32. Yan R, Fleury MO, Merler M, Natsev A, Smith JR (2009) Large-scale multimedia semantic concept modeling using robust subspace bagging and MapReduce. In: Proc. LS-MMRM’09, pp. 35–42

  33. Zhao WL, Wu X, Ngo CW (2010) On the annotation of web videos by efficient near-duplicate search. IEEE Trans Multimedia 12(5):448–461

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant 61102059, the “Shu Guang” project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation under Grant 12SG23, the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, the Fundamental Research Funds for the Central Universities under Grants 0800219158, 0800219270, and 1700219104, and the National Basic Research Program (973 Program) of China under Grant 2010CB328101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanli Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhu, F., Xiao, B. et al. GPU-based MapReduce for large-scale near-duplicate video retrieval. Multimed Tools Appl 74, 10515–10534 (2015). https://doi.org/10.1007/s11042-014-2185-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-014-2185-x

Keywords

Navigation