Skip to main content
Log in

Accurate and robust ROI localization in a camshift tracking application

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Camshift has been well accepted as one of the most popular methods for object tracking. However, it fails to address complex situations, such as similar color interference, object occlusion, and illumination changes. In this paper, we enhance Camshift to enable it to handle the above-mentioned problems. A two-dimensional (2D) histogram of the hue and luminance is used for the color features of the target. To reduce the influence from irrelevant background pixels, a Flood-fill operation is implemented. The obtained 2D target model can precisely describe the target as well as achromatic points. A similarity score is evaluated to prevent similar color interference. When a target’s colors are not distinguishable from the background colors, motion information will contribute to the tracking task. Finally, an average rate change is adopted to maintain progressive but not abrupt changes in the window size. The proposed algorithm has been extensively tested. The results are satisfactory while maintaining the processing in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Allen JG, Xu RY, Jin JS (2004) Object tracking using CamShift algorithm and multiple quantized feature spaces. Australian Computer Society, Inc., Proceedings of the Pan-Sydney area workshop on Visual information processing, pp 3–7

    Google Scholar 

  2. Avidan S (2007) Ensemble tracking. IEEE Trans Patt Anal Mach Intel 29(2):261–271

    Article  Google Scholar 

  3. Babenko B, Yang MH, Belongie S (2011) Robust object tracking with online multiple instance learning. IEEE Trans Patt Anal Mach Intel 33(8):1619–1632

    Article  Google Scholar 

  4. Bhattacharyya A (1943) On a measure of divergence between Two statistical populations defined by probability distributions. Bulletin of the Calcutta Mathematical Society: 99–109

  5. Birchfield ST, Rangarajan S (2005) Spatiograms versus histograms for region-based tracking. IEEE Comp Soc Confer Comp Vis Patt Recog 2:1158–1163

    Google Scholar 

  6. Bradski G R (1998) Computer Vision Face Tracking for Use in A Perceptual User Interface, Intel Technology Journal, 2nd Quarter: 13–27

  7. Cheng Y (1995) Mean shift, mode seeking, and clustering. IEEE Trans Patt Anal Mach Intel 17(8):790–799

    Article  Google Scholar 

  8. Collins R (2003) Mean-shift blob tracking through scale space. IEEE Comp Soc Confer Comp Vis Patter Recog 2:234–240

    Google Scholar 

  9. Collins R, Liu Y, Leordeanu M (2005) Online selection of discriminative tracking features. IEEE J Patter Anal Mach Intel 27(10):1631–1643

    Article  Google Scholar 

  10. Comaniciu D, Meer P (2002) Mean shift: a robust approach towards feature space analysis. IEEE Trans Patt Anal Mach Intel 24(5):603–619

    Article  Google Scholar 

  11. Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking. IEEE Trans Patt Anal Mach Intel 25(5):564–577

    Article  Google Scholar 

  12. Fukunaga K, Hostetler LD (1975) The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans Inf Theory 21(1):32–40

    Article  MathSciNet  MATH  Google Scholar 

  13. Grabner H, Bischof H (2006) On-line boosting and vision. IEEE Comp Soc Confer Comp Vis Patter Recog 1:260–267

    Google Scholar 

  14. Grabner H, Leistner C, Bischof H (2008) Semi-supervised on-line boosting for robust tracking. Eur Confer Comp Vis (ECCV) 1:234–247

    Google Scholar 

  15. Hare S, Saffari A, Torr P H S (2011) Struck: Structured Output Tracking with Kernels, IEEE International Conference on Computer Vision (ICCV): 263–270

  16. Kalal Z, Mikolajczyk K, Matas J (2012) Tracking-learning-detection. IEEE Trans Patt Anal Mach Intel 34(7):1409–1422

    Article  Google Scholar 

  17. Leichter I (2012) Mean shift trackers with cross-Bin metrics. IEEE Trans Patt Anal Mach Intel 34(4):695–706

    Article  Google Scholar 

  18. Levinshtein A, Stere A, Kutulakos K, Fleet D, Dickinson S, Siddiqi K (2009) Turbopixels: fast superpixels using geometric flows. IEEE Trans Patt Anal Mach Intel 31(12):2290–2297

    Article  Google Scholar 

  19. Ning J, Zhang L, Zhang D, Wu C (2009) Robust object tracking using joint color-texture histogram. Int J Pattern Recognit Artif Intell 23(7):1245–1263

    Article  Google Scholar 

  20. Okuma K, Taleghani A, De Freitas N, De Freitas O, Little JJ, Lowe DG (2004) A boosted particle filter: multitarget detection and tracking. IEEE Comp Soc Confer Comp Vis Patter Recog 1:28–39

    Google Scholar 

  21. Ren X, Malik J (2003) Learning a classification model for segmentation. IEEE Inter Confer Comp Vis 1:10–17

    Google Scholar 

  22. Ross DA, Lim J, Lin RS, Yang MH (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1–3):125–141

    Article  Google Scholar 

  23. Salti S, Cavallaro A, Di Stefano LD (2012) Adaptive appearance modeling for video tracking: survey and evaluation. IEEE Trans Image Process 21(10):4334–4348

    Article  MathSciNet  Google Scholar 

  24. Stalder S, Grabner H, Gool L (2010) Cascaded confidence filtering for improved tracking-by- detection. IEEE Comp Soc Confer Comp Vis Patter Recog 369–382

  25. Wang S, Lu H, Yang F, Yang M H (2011) Superpixel Tracking, IEEE International Conference on Computer Vision: 1323–1330

  26. Wu Y, Lim J, Yang MH (2013) Online object tracking: a benchmark. IEEE Conference on Computer Vision and, Pattern Recognition (CVPR), pp 2411–2418

    Google Scholar 

  27. Yang H, Shao L, Zheng F, Wang L, Song Z (2011) Recent advances and trends in visual tracking: a review. Neurocomputing 74:3823–3831

    Article  Google Scholar 

  28. Yilmaz A, Javed O, Shah M (2006) Object Tracking: A Survey, ACM Computing Surveys 38(4): 1–45, article no. 13

Download references

Acknowledgments

The authors would like to express their gratitude for the anonymous reviewers for the careful reading of the original manuscript. Their comments and suggestions have led to a much better presentation of the paper. This research is supported in part by the National Science Council (NSC 101-2221-E-032-054) of Taiwan, R.O.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shwu-Huey Yen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yen, SH., Wang, CH. & Chien, JC. Accurate and robust ROI localization in a camshift tracking application. Multimed Tools Appl 74, 10291–10312 (2015). https://doi.org/10.1007/s11042-014-2167-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-014-2167-z

Keywords

Navigation