Skip to main content
Log in

3D model retrieval based on linear prediction coding in cylindrical and spherical projections using SVM-OSS

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper presents a 3D model descriptor based on the linear prediction coding (LPC) coefficients to retrieve 3D objects. In this method, the 3D object is projected on the lateral surface of a cylinder parallel to one of its principal axes and centered at the centroid of the object. To improve efficiency, cylindrical projection is performed on three cylinders parallel to principal axes. Besides, the object is projected on a sphere centered at the centroid of the 3D object. The surface of object is converted to two-dimensional shapes as a result of performing the projections which preserves the geometric features of the object. Then, LPC coefficients are extracted from the two-dimensional projected shapes. These coefficients estimate the parameters of correlated signal, efficiently. Since the cylindrical and spherical projections of the 3D model are correlated surfaces, LPC coefficients describe the surfaces as well. The rotation normalization is performed employing the principal component analysis. Furthermore, the retrieval performance is enhanced employing SVM-OSS similarity measure which efficiently compares two model feature vectors. We implement an experimental comparison on PSB database of 3D models in order to demonstrate the performance of the proposed descriptor. Experimental results show the effectiveness of the proposed descriptor compared to current methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Alizadeh, F., & Sutherland, A. (2012, June). 3D model retrieval using the 2D Poisson equation. In Content-Based Multimedia Indexing (CBMI), 2012 10th International Workshop on (pp. 1–6). IEEE.

  2. Ankerst, M., Kastenmüller, G., Kriegel, H. P., & Seidl, T. (1999, January). 3D shape histograms for similarity search and classification in spatial databases. In Advances in Spatial Databases (pp. 207–226). Springer Berlin Heidelberg.

  3. Ansary TF, Daoudi M, Vandeborre JP (2007) A bayesian 3-d search engine using adaptive views clustering. Multimed, IEEE Trans on 9(1):78–88

    Article  Google Scholar 

  4. Atmosukarto I, Wilamowska K, Heike C, Shapiro LG (2010) 3D object classification using salient point patterns with application to craniofacial research. Pattern Recognit 43(4):1502–1517

    Article  Google Scholar 

  5. Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992, July). A training algorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational learning theory (pp. 144–152). ACM.

  6. Chuang JH, Tsai CH, Ko MC (2000) Skeletonisation of three-dimensional object using generalized potential field. Pattern Anal and Mach Intell, IEEE Trans on 22(11):1241–1251

    Article  Google Scholar 

  7. Daras P, Axenopoulos A (2010) A 3D shape retrieval framework supporting multimodal queries. Int J of Comput Vision 89(2–3):229–247

    Article  Google Scholar 

  8. Faloutsos, C. (1996). Searching multimedia databases by content (Vol. 3). Springer.

  9. Fang WH, Yagle AE (1994) Two-dimensional linear prediction and spectral estimation on a polar raster. Signal Process, IEEE Trans on 42(3):628–641

    Article  Google Scholar 

  10. Ferencz, A., Learned-Miller, E. G., & Malik, J. (2005). Building a classification cascade for visual identification from one example

  11. Ferencz, A., Learned-Miller, E. G., & Malik, J. (2005). Learning hyper-features for visual identification. In Neural Information Processing Systems (NIPS) (Vol. 17, pp. 425–432).

  12. Frejlichowski, D. (2011). A three-dimensional shape description algorithm based on polar-fourier transform for 3D model retrieval. In Image Analysis (pp. 457–466). Springer Berlin Heidelberg.

  13. Funkhouser T, Min P, Kazhdan M, Chen J, Halderman A, Dobkin D, Jacobs D (2003) A search engine for 3D models. ACM Trans on Graph (TOG) 22(1):83–105

    Article  Google Scholar 

  14. Gao Y, Tang J, Hong R, Yan S, Dai Q, Zhang N, Chua TS (2012) Camera constraint-free view-based 3-D object retrieval. Image Process, IEEE Trans on 21(4):2269–2281

    Article  MathSciNet  Google Scholar 

  15. Haykin, S. (2003). Adaptive filter theory (ise)

  16. Hua, S., Jiang, Q., & Zhong, Q. (2011). 3D Model Retrieval Based on Multi-View SIFT Feature. In Communication Systems and Information Technology (pp. 163–169). Springer Berlin Heidelberg.

  17. Jain AK (1989) Fundamentals of digital image processing (Vol. 3). Prentice-Hall, Englewood Cliffs

    Google Scholar 

  18. Jain, V., & Learned-Miller, E. G. (2006). Discriminative training of hyper-feature models for object identification. In Proceedings of the British Machine Vision Conference (BMVC) (Vol. 1, pp. 357–366).

  19. Kazhdan, M. M. (2004). Shape representations and algorithms for 3D model retrieval (Doctoral dissertation, Princeton University)

  20. Kazhdan, M., Funkhouser, T., & Rusinkiewicz, S. (2003, June). Rotation invariant spherical harmonic representation of 3D shape descriptors. In Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry processing (pp. 156–164). Eurographics Association.

  21. Keim, D. A. (1999). Efficient geometry-based similarity search of 3D spatial databases (Vol. 28, No. 2, pp. 419–430). ACM.

  22. Khatun A, Chai WY, Islam MR (2010) An ellipsoidal 3D shape representation and wavelet transform feature descriptor for 3D shape retrieval. Asian J of Inf Technol 9(2):101–106

    Article  Google Scholar 

  23. Kuo CT, Cheng SC (2007) 3D model retrieval using principal plane analysis and dynamic programming. Pattern Recog 40(2):742–755

    Article  MATH  Google Scholar 

  24. Laga H, Nakajima M, Chihara K (2007) Discriminative spherical wavelet features for content-based 3D model retrieval. Int J of Shape Model 13(01):51–72

    Article  MATH  MathSciNet  Google Scholar 

  25. Lau RW, Wong B (2002) Web-based 3D geometry model retrieval. World Wide Web 5(3):193–206

    Article  Google Scholar 

  26. Lin, T. Y., & Ngo, T. (2007). Clustering high dimensional data using SVM. In Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (pp. 256–262). Springer Berlin Heidelberg.

  27. Liu, Y., Zha, H., & Qin, H. (2006, June). The generalized shape distributions for shape matching and analysis. In Shape Modeling and Applications, 2006. SMI 2006. IEEE International Conference on (pp. 16–16). IEEE.

  28. Loffler, J. (2000). Content-based retrieval of 3D models in distributed web databases by visual shape information. In Information Visualization, 2000. Proceedings. IEEE International Conference on (pp. 82–87). IEEE.

  29. Manzanera, A., Bernard, T. M., Pretêux, F., & Longuet, B. (1999). Medial faces from a concise 3D thinning algorithm. In Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on (Vol. 1, pp. 337–343). IEEE.

  30. Mohamed W, Hamza AB (2012) Reeb graph path dissimilarity for 3D object matching and retrieval. The Visual Comput 28(3):305–318

    Article  Google Scholar 

  31. Novotni, M., & Klein, R. (2003, June). 3D Zernike descriptors for content based shape retrieval. In Proceedings of the eighth ACM symposium on Solid modeling and applications (pp. 216–225). ACM.

  32. Nowak, E., & Jurie, F. (2007, June). Learning visual similarity measures for comparing never seen objects. In Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on (pp. 1–8). IEEE.

  33. Ohbuchi R, Minamitani T, Takei T (2005) Shape-similarity search of 3D models by using enhanced shape functions. Int J of Comput Applications in Technol 23(2):70–85

    Article  Google Scholar 

  34. Osada, R., Funkhouser, T., Chazelle, B., & Dobkin, D. (2001, May). Matching 3D models with shape distributions. In Shape Modeling and Applications, SMI 2001 International Conference on. (pp. 154–166). IEEE.

  35. Osada, R., Funkhouser, T., Chazelle, B., & Dobkin, D. (2001, May). Matching 3D models with shape distributions. In Shape Modeling and Applications, SMI 2001 International Conference on. (pp. 154–166).

  36. Pan X, You Q, Liu Z, Chen QH (2011) 3D shape retrieval by poisson histogram. Pattern Recognit Lett 32(6):787–794

    Article  Google Scholar 

  37. Papadakis, P., Pratikakis, I., Theoharis, T., Passalis, G., & Perantonis, S. (2008). 3D Object Retrieval using an Efficient and Compact Hybrid Shape Descriptor. In Eurographics Workshop on 3D object retrieval

  38. Papadakis P, Pratikakis I, Theoharis T, Perantonis S (2010) PANORAMA: a 3D shape descriptor based on panoramic views for unsupervised 3D object retrieval. Int J of Comput Vision 89(2–3):177–192

    Article  Google Scholar 

  39. Paquet, E., & Rioux, M. (1998). Content-based access of VRML libraries. In Multimedia Information Analysis and Retrieval (pp. 20–32). Springer Berlin Heidelberg.

  40. Petrou, M., & Petrou, C. (2010). Image processing: the fundamentals. Wiley. com.

  41. Rabiner LR, Schafer RW (1979) Digital processing of speech signals (Vol. 19). Prentice-hall, New York

    Google Scholar 

  42. Ranganath S, Jain A (1985) Two-dimensional linear prediction models–part I: spectral factorization and realization. Acoustics, Speech and Signal Process, IEEE Trans on 33(1):280–299

    Article  Google Scholar 

  43. Riesenhuber M, Poggio T (2000) Computational models of object recognition in cortex: a review (No. AI-MEMO-1695). MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB, Cambridge

    Google Scholar 

  44. Shih JL, Chen HY (2009) A 3D model retrieval approach using the interior and exterior 3D shape information. Multimed Tools and Appl 43(1):45–62

    Article  Google Scholar 

  45. Shih JL, Huang TJ (2012) Combination of interior and exterior shape descriptors for 3D model retrieval. J of Inf Technol and Appl 6(1):31–40

    Google Scholar 

  46. Shih JL, Lee CH, Wang JT (2007) A new 3D model retrieval approach based on the elevation descriptor. Pattern Recog 40(1):283–295

    Article  MATH  Google Scholar 

  47. Shilane, P., Min, P., Kazhdan, M., & Funkhouser, T. (2004, June). The princeton shape benchmark. In Shape Modeling Applications, 2004. Proceedings (pp. 167–178). IEEE.

  48. Tam GK, Lau RW (2007) Deformable model retrieval based on topological and geometric signatures. Vis and Comput Graph, IEEE Trans on 13(3):470–482

    Article  MathSciNet  Google Scholar 

  49. Theoharis T, Papaioannou G, Platis N, Patrikalakis NM (2007) Graphics and visualization: principles & algorithms. AK Peters, Ltd, Natick

    Google Scholar 

  50. Veltkamp, R. C. (2001, May). Shape matching: Similarity measures and algorithms. In Shape Modeling and Applications, SMI 2001 International Conference on. (pp. 188–197). IEEE.

  51. Wolf, L., Hassner, T., & Taigman, Y. (2008). Descriptor based methods in the wild. In Workshop on Faces in'Real-Life'Images: Detection, Alignment, and Recognition.

  52. Wolf L, Hassner T, Taigman Y (2011) Effective unconstrained face recognition by combining multiple descriptors and learned background statistics. Pattern Anal and Machine Intell, IEEE Trans on 33(10):1978–1990

    Article  Google Scholar 

  53. Zaharia, T., & Preteux, F. J. (2001, May). 3D-shape-based retrieval within the MPEG-7 framework. In Photonics West 2001-Electronic Imaging (pp. 133–145). International Society for Optics and Photonics.

  54. Zhang, C., & Chen, T. (2001). Efficient feature extraction for 2D/3D objects in mesh representation. In Image Processing, 2001. Proceedings. 2001 International Conference on (Vol. 3, pp. 935–938). IEEE.

  55. Zhou Y, Toga AW (1999) Efficient skeletonization of volumetric objects. Vis and Comput Graph, IEEE Trans on 5(3):196–209

    Article  Google Scholar 

  56. Ziyang, C. (2010, June). Retrieval of 3D Models Based on Spherical Harmonics. In Electrical and Control Engineering (ICECE), 2010 International Conference on (pp. 2991–2994). IEEE.

  57. Zou, K. S., Ip, W. H., Wu, C. H., Chen, Z. Q., Yung, K. L., & Chan, C. Y. (2012). A novel 3D model retrieval approach using combined shape distribution. Multimedia Tools and Applications, 1–20

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Ebrahimnezhad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrdad, V., Ebrahimnezhad, H. 3D model retrieval based on linear prediction coding in cylindrical and spherical projections using SVM-OSS. Multimed Tools Appl 74, 1511–1535 (2015). https://doi.org/10.1007/s11042-014-2055-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-014-2055-6

Keywords

Navigation