Multimedia Tools and Applications

, Volume 74, Issue 17, pp 6623–6639 | Cite as

A direct non-buffer rate control algorithm for real time video compression

  • Yu Sun
  • Zhidan Feng
  • Reshma R. Ginnavaram


Rate control (RC) is crucial in controlling compression bitrates and encoding qualities for networked video applications. In this paper, we propose a direct non-buffer real-time rate control algorithm for video encoding, which has two unique features. First, unlike traditional algorithms which adopt buffers in rate control, the proposed algorithm does not use a buffer in rate regulation which can reduce the delay and improve real-time response. Second, we propose a new Proportional-Integral-Derivative (PID) bit controller to directly control encoding bitrates. In addition, we also develop a simple but effective method for real-time target bit allocation. To the best of our knowledge, this is the first work that conducts video rate control without using a buffer. Our extensive experimental results have demonstrated that the proposed algorithm outperforms the MPEG-4 rate control algorithm by achieving more accurate rate regulation and improving overall coding quality.


Rate control PID bit controller Bit allocation Video compression 



This work is partially supported by NASA EPSCoR 2012 Award (No. NNX13AD32A) and faculty sabbatical leave fund from Uni. of Central Arkansas.


  1. 1.
    Chen Z, Ngan KN (2007) Recent advances in rate control for video coding. Signal Process Image Commun 22(1):19–38CrossRefGoogle Scholar
  2. 2.
    Corbera JR, Lei S (1999) Rate control in DCT video coding for Low-delay communications. IEEE Trans Cir Syst Video Technol 9(1):172–185CrossRefGoogle Scholar
  3. 3.
    Lee HJ, Chiang T, Zhang YQ (2000) Scalable rate control for MPEG-4 video. IEEE Trans Cir Syst Video Technol 10(6):878–894CrossRefGoogle Scholar
  4. 4.
    Leontaris A, Tourapis A-M (2007) Rate Control Reorganization in the Joint Model (JM) Reference Software. JVT-W042, 23rd meeting, San Jose, California, USAGoogle Scholar
  5. 5.
    Leontaris A, Tourapis A-M (2007) Rate Control for the Joint Scalable Video Model (JSVM). JVT-W043, 24th meeting, San Jose, USAGoogle Scholar
  6. 6.
    Li ZG, Pan F, Lim KP, Feng GN (2003) Adaptive basic unit layer rate control for JVT. JVT-G012, 7th meeting, Pattaya, ThailandGoogle Scholar
  7. 7.
    Liu Y, Li ZG, Soh YC (2007) A novel rate control scheme for low delay video communication of H.264/AVC standard. IEEE Trans Circ Syst Video Technol 17(1):68–78CrossRefGoogle Scholar
  8. 8.
    Ma Z, Xu M, Ou Y-F, Wang Y (2012) Modeling of rate and perceptual quality of compressed video as functions of frame rate and quantization stepsize and its applications. IEEE Trans Circ Syst Video Technol 22(5):671–682CrossRefGoogle Scholar
  9. 9.
    MPEG-2 Test Model 5 (1993) Doc. ISO/IEC JTCI/SC29/WG11/93-400Google Scholar
  10. 10.
    MPEG-4 Video Verification Model V8.0 (1999) ISO/IEC JTC1/SC29/WG11 N3093 (1999) Coding of Moving Pictures and Audio, MauiGoogle Scholar
  11. 11.
    Ou Y-F, Ma Z, Wang Y (2011) Perceptual quality assessment of video considering both frame rate and quantization artifacts. IEEE Trans Circ Syst Video Technol 21(3):286–298CrossRefGoogle Scholar
  12. 12.
    Ruan R, Hu R and Li Z (2011) A novel rate control algorithm of video coding based on visual perceptual characteristic. Proceedings of the 6th International Conference on Computer Science & Education (ICCSE)Google Scholar
  13. 13.
    Shen L, Zhang Z, Zhang W (2006) A New scheme for SNR-FGS with spatial scalability based on H.264/AVC. J Optoelectron Laser 17(8):948–952MathSciNetGoogle Scholar
  14. 14.
    Sun Y, Ahmad I (2004) A robust and adaptive rate control algorithm for objects based video. IEEE Trans Circ Syst Video Technol 14(10):1167–1182CrossRefGoogle Scholar
  15. 15.
    Sun Y, Ahmad I (2005) Asynchronous rate control for multi-object videos. IEEE Trans Cir Syst Video Technol 15(8):1007–1018CrossRefGoogle Scholar
  16. 16.
    Sun Y, Ahmad I, Li D, Zhang YQ (2006) Region-based rate control and bit allocation for wireless video transmission. IEEE Trans Multimed 8(1):1–10MATHCrossRefGoogle Scholar
  17. 17.
    Sun Y, Zhou Y, Feng Z, He Z (2009) Incremental rate control for H.264/AVC video compression. Inst Eng Technol (IET) Image Process 3(5):286–298Google Scholar
  18. 18.
    Tan E, Chou C-T (2012) A frame rate optimization framework for improving continuity in video streaming. IEEE Trans Multimed 14(3):910–922CrossRefGoogle Scholar
  19. 19.
    Tao B, Dickinson WB, Peterson HA (2000) Adaptive model-driven bit allocation for MPEG video coding. IEEE Trans Circ Syst Video Technol 10(1):147–157CrossRefGoogle Scholar
  20. 20.
    Tian L, Zhou Y, Sun Y (2012) Novel rate control scheme for intra frame video coding with exponential rate-distortion model on H.264/AVC. Elsevier J Vis Commun Image Represent 23(6):873–882CrossRefGoogle Scholar
  21. 21.
    Vetro A, Sun H, Wang Y (1999) MPEG-4 rate control for multiple video objects. IEEE Trans Circ Syst Video Technol 9(1):186–199CrossRefGoogle Scholar
  22. 22.
    Wang H, Kwong S (2008) Rate-distortion optimization of rate control for H.264 with adaptive initial quantization parameter determination. IEEE Trans Circ Syst Video Technol 18(1):140–144CrossRefGoogle Scholar
  23. 23.
    Yang J, Sun Y, Wu Y, Sun S (2012) Joint H.264/SVC-MIMO rate control for wireless video applications. Inst Eng Technol (IET) Image Process 6(1):43–52MathSciNetGoogle Scholar
  24. 24.
    Yang J, Sun Y, Zhou Y, Sun S (2013) Incremental rate control for H.264 AVC scalable extension. Int J Multimed Tools Appl (Springer) 64(3):581–598CrossRefGoogle Scholar
  25. 25.
    Zhou Y, Sun Y, Feng Z, Sun S (2009) New rate-distortion modeling and efficient rate control for H.264/AVC video coding. Elsevier J Signal Process - Image Commun 24(5):345–356CrossRefGoogle Scholar
  26. 26.
    Zhou Y, Sun Y, Feng Z, Sun S (2011) PID-based bit allocation strategy for H.264/AVC rate control. IEEE Trans Circ Syst II 58(3):184–188CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of Central ArkansasConwayUSA
  2. 2.IT Research GroupUniversity of Arkansas for Medical SchoolLittle RockUSA

Personalised recommendations