Skip to main content
Log in

A direct non-buffer rate control algorithm for real time video compression

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Rate control (RC) is crucial in controlling compression bitrates and encoding qualities for networked video applications. In this paper, we propose a direct non-buffer real-time rate control algorithm for video encoding, which has two unique features. First, unlike traditional algorithms which adopt buffers in rate control, the proposed algorithm does not use a buffer in rate regulation which can reduce the delay and improve real-time response. Second, we propose a new Proportional-Integral-Derivative (PID) bit controller to directly control encoding bitrates. In addition, we also develop a simple but effective method for real-time target bit allocation. To the best of our knowledge, this is the first work that conducts video rate control without using a buffer. Our extensive experimental results have demonstrated that the proposed algorithm outperforms the MPEG-4 rate control algorithm by achieving more accurate rate regulation and improving overall coding quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen Z, Ngan KN (2007) Recent advances in rate control for video coding. Signal Process Image Commun 22(1):19–38

    Article  Google Scholar 

  2. Corbera JR, Lei S (1999) Rate control in DCT video coding for Low-delay communications. IEEE Trans Cir Syst Video Technol 9(1):172–185

    Article  Google Scholar 

  3. Lee HJ, Chiang T, Zhang YQ (2000) Scalable rate control for MPEG-4 video. IEEE Trans Cir Syst Video Technol 10(6):878–894

    Article  Google Scholar 

  4. Leontaris A, Tourapis A-M (2007) Rate Control Reorganization in the Joint Model (JM) Reference Software. JVT-W042, 23rd meeting, San Jose, California, USA

  5. Leontaris A, Tourapis A-M (2007) Rate Control for the Joint Scalable Video Model (JSVM). JVT-W043, 24th meeting, San Jose, USA

  6. Li ZG, Pan F, Lim KP, Feng GN (2003) Adaptive basic unit layer rate control for JVT. JVT-G012, 7th meeting, Pattaya, Thailand

  7. Liu Y, Li ZG, Soh YC (2007) A novel rate control scheme for low delay video communication of H.264/AVC standard. IEEE Trans Circ Syst Video Technol 17(1):68–78

    Article  Google Scholar 

  8. Ma Z, Xu M, Ou Y-F, Wang Y (2012) Modeling of rate and perceptual quality of compressed video as functions of frame rate and quantization stepsize and its applications. IEEE Trans Circ Syst Video Technol 22(5):671–682

    Article  Google Scholar 

  9. MPEG-2 Test Model 5 (1993) Doc. ISO/IEC JTCI/SC29/WG11/93-400

  10. MPEG-4 Video Verification Model V8.0 (1999) ISO/IEC JTC1/SC29/WG11 N3093 (1999) Coding of Moving Pictures and Audio, Maui

  11. Ou Y-F, Ma Z, Wang Y (2011) Perceptual quality assessment of video considering both frame rate and quantization artifacts. IEEE Trans Circ Syst Video Technol 21(3):286–298

    Article  Google Scholar 

  12. Ruan R, Hu R and Li Z (2011) A novel rate control algorithm of video coding based on visual perceptual characteristic. Proceedings of the 6th International Conference on Computer Science & Education (ICCSE)

  13. Shen L, Zhang Z, Zhang W (2006) A New scheme for SNR-FGS with spatial scalability based on H.264/AVC. J Optoelectron Laser 17(8):948–952

    MathSciNet  Google Scholar 

  14. Sun Y, Ahmad I (2004) A robust and adaptive rate control algorithm for objects based video. IEEE Trans Circ Syst Video Technol 14(10):1167–1182

    Article  Google Scholar 

  15. Sun Y, Ahmad I (2005) Asynchronous rate control for multi-object videos. IEEE Trans Cir Syst Video Technol 15(8):1007–1018

    Article  Google Scholar 

  16. Sun Y, Ahmad I, Li D, Zhang YQ (2006) Region-based rate control and bit allocation for wireless video transmission. IEEE Trans Multimed 8(1):1–10

    Article  MATH  Google Scholar 

  17. Sun Y, Zhou Y, Feng Z, He Z (2009) Incremental rate control for H.264/AVC video compression. Inst Eng Technol (IET) Image Process 3(5):286–298

    Google Scholar 

  18. Tan E, Chou C-T (2012) A frame rate optimization framework for improving continuity in video streaming. IEEE Trans Multimed 14(3):910–922

    Article  Google Scholar 

  19. Tao B, Dickinson WB, Peterson HA (2000) Adaptive model-driven bit allocation for MPEG video coding. IEEE Trans Circ Syst Video Technol 10(1):147–157

    Article  Google Scholar 

  20. Tian L, Zhou Y, Sun Y (2012) Novel rate control scheme for intra frame video coding with exponential rate-distortion model on H.264/AVC. Elsevier J Vis Commun Image Represent 23(6):873–882

    Article  Google Scholar 

  21. Vetro A, Sun H, Wang Y (1999) MPEG-4 rate control for multiple video objects. IEEE Trans Circ Syst Video Technol 9(1):186–199

    Article  Google Scholar 

  22. Wang H, Kwong S (2008) Rate-distortion optimization of rate control for H.264 with adaptive initial quantization parameter determination. IEEE Trans Circ Syst Video Technol 18(1):140–144

    Article  Google Scholar 

  23. Yang J, Sun Y, Wu Y, Sun S (2012) Joint H.264/SVC-MIMO rate control for wireless video applications. Inst Eng Technol (IET) Image Process 6(1):43–52

    MathSciNet  Google Scholar 

  24. Yang J, Sun Y, Zhou Y, Sun S (2013) Incremental rate control for H.264 AVC scalable extension. Int J Multimed Tools Appl (Springer) 64(3):581–598

    Article  Google Scholar 

  25. Zhou Y, Sun Y, Feng Z, Sun S (2009) New rate-distortion modeling and efficient rate control for H.264/AVC video coding. Elsevier J Signal Process - Image Commun 24(5):345–356

    Article  Google Scholar 

  26. Zhou Y, Sun Y, Feng Z, Sun S (2011) PID-based bit allocation strategy for H.264/AVC rate control. IEEE Trans Circ Syst II 58(3):184–188

    Article  Google Scholar 

Download references

Acknowledgement

This work is partially supported by NASA EPSCoR 2012 Award (No. NNX13AD32A) and faculty sabbatical leave fund from Uni. of Central Arkansas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Feng, Z. & Ginnavaram, R.R. A direct non-buffer rate control algorithm for real time video compression. Multimed Tools Appl 74, 6623–6639 (2015). https://doi.org/10.1007/s11042-014-1913-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-014-1913-6

Keywords

Navigation