Multimedia Tools and Applications

, Volume 74, Issue 15, pp 5747–5765 | Cite as

Histogram shifting based reversible data hiding method using directed-prediction scheme

  • Xianyi Chen
  • Xingming Sun
  • Huiyu Sun
  • Lingyun Xiang
  • Bin Yang


This paper aims at reducing the shifting distortion of histogram shifting reversible data hiding method. Instead of calculating symmetrically the prediction value as were done in other schemes, based on the gradient-adjusted predictor (GAP), a directed-prediction scheme, which includes two asymmetric predictors-the right and left GAPs, is designed to predict asymmetrically pixel value. Then two asymmetric error histograms, with right and left-skewness, are constructed by gathering the directed prediction errors, which effectively reduces the amount of pixels on the shifted side of the error histograms. Moreover, the optimal embedding points and thresholds are calculated by defining an evaluation index of the shifting distortion. Experimental results validate the effectiveness of the proposed method and demonstrate that it outperforms several previous methods in terms of payload and image quality.


Reversible data hiding Directed-prediction scheme Gradient-adjusted predictor (GAP) Asymmetric-histogram shifting Prediction errors 



This work is supported by the National Natural Science Foundation of China (No. 61232016, 61173141, 61173142, 61173136, 61103215, 61373132 and 61373133), GYHY201206033, 2013DFG12860, 201301030, BC2013012 and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD fund).


  1. 1.
    Alattar AM (2004) Reversible watermarking using the difference expansion of a generalized integer transform. IEEE Trans Image Process 13(8):1147–1156MathSciNetCrossRefGoogle Scholar
  2. 2.
    Barton JM (1997) Method and apparatus for embedding authentication information with in digital data. US Patent 5:646–997Google Scholar
  3. 3.
    Chen XY, Sun XM, Sun HY, Zhou ZL, Zhang JJ (2013) Reversible watermarking method based on asymmetric-histogram shifting of prediction errors. J Syst Softw 86(10):2620–2626CrossRefGoogle Scholar
  4. 4.
    Coatrieux G, Pan W, Nora CB, Cuppens F, Roux C (2013) Reversible watermarking based on invariant image classification and dynamic histogram shifting. IEEE Trans Inf Forensic Sci 8(1):111–120CrossRefGoogle Scholar
  5. 5.
    Coltuc D (2011) Improved embedding for prediction-based reversible watermarking. IEEE Trans Inf Forensic Sci 6(3):873–882CrossRefGoogle Scholar
  6. 6.
    Coltuc D (2012) Low distortion transform for reversible watermarking. IEEE Trans Image Process 21(1):412–417MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fallahpour M, Megias D, Ghanbari M (2011) Subjectively adapted high capacity lossless image data hiding based on prediction errors. Multimed Tool Appl 52(2):513–527CrossRefGoogle Scholar
  8. 8.
    Fan W, Chen ZY, Chen M, Luo LX, Xiong Z (2012) Reversible data hiding with context modeling, generalized expansion and boundary map. Multimed Tool Appl 57(3):477–499CrossRefGoogle Scholar
  9. 9.
    Hong W (2012) Adaptive reversible data hiding method based on error energy control and histogram shifting. Opt Commun 285(2):101–108CrossRefGoogle Scholar
  10. 10.
    Hong W, Chen TS (2010) A local variance-controlled reversible data hiding method using prediction and histogram-shifting. J Syst Softw 22(2):131–140Google Scholar
  11. 11.
    Hong W, Chen TS, Shiu CW (2009) Reversible data hiding for high quality images using modification of prediction errors. J Syst Softw 82(11):1833–1842CrossRefGoogle Scholar
  12. 12.
    Image database USC, Available:
  13. 13.
    Li XL, Li B, Yang B, Zeng TY (2013) General framework to histogram-shifting-based reversible data hiding. IEEE Trans Image Process 22(6):2181–2191MathSciNetCrossRefGoogle Scholar
  14. 14.
    Li XL, Zhang WM, Gui XL, Yang B (2013) A novel reversible data hiding scheme based on two-dimensional difference-histogram modification. IEEE Trans Inf Forensic Sci 8(7):1091–1100CrossRefGoogle Scholar
  15. 15.
    Luo L, Chen Z, Chen M, Zeng X, Xiong Z (2010) Reversible image watermarking using interpolation technique. IEEE Trans Inf Forensic Sci 5(1):187–193CrossRefGoogle Scholar
  16. 16.
    Ni Z, Shi YQ, Ansari N, Su W (2006) Reversible data hiding. IEEE Trans Circ Syst Video Technol 16(3):354–362CrossRefGoogle Scholar
  17. 17.
    Sachnev V, Hyoung JK, Jeho N, Scuresh S, Yun QS (2009) Reversible watermarking algorithm using sorting and prediction. IEEE Trans Circ Syst Video Technol 19(7):989–999CrossRefGoogle Scholar
  18. 18.
    Thodi DM, Rodriguez JJ (2007) Expansion embedding techniques for reversible watermarking. IEEE Trans Image Process 16(3):721–730MathSciNetCrossRefGoogle Scholar
  19. 19.
    Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circ Syst Video Technol 13(8):890–896CrossRefGoogle Scholar
  20. 20.
    Tsai PY, Hu YC, Yeh HL (2009) Reversible image hiding scheme using predictive coding and histogram shifting. Signal Process 89(6):1129–1143MATHCrossRefGoogle Scholar
  21. 21.
    Wu X, Memon N (1997) Contxt-based, adaptive, lossless image coding. IEEE Trans Commun 45(4):437–444CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Xianyi Chen
    • 1
  • Xingming Sun
    • 1
    • 2
  • Huiyu Sun
    • 3
  • Lingyun Xiang
    • 1
  • Bin Yang
    • 1
  1. 1.School of Information Science and EngineeringHunan UniversityHunanChina
  2. 2.Jiangsu Engineering Center of Network MonitoringNanjing University of Information Science and TechnologyNanjingChina
  3. 3.Department of Mathematical SciencesUniversity of BathBathUK

Personalised recommendations