Skip to main content
Log in

Noncausal fractional directional differentiator and blind deconvoluation: motion blur estimation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The problem of blind estimation of motion blur parameters from a single image is addressed. The blur direction and extent of motion-blurred image, which are introduced by relative motion between a camera and its object scene, are needed in the methods of image restoration, such as blind deconvolution. As an extension to the fractional-order derivative, a noncausal fractional-order directional derivative operator is devised, which is robust to noise. Based on this new operator, a novel method identifying blur parameters is developed in this work. The performance comparison between the proposed method and the state-of-the-art method is also presented, demonstrating that the former provides better immunity to noise and capacity to identify motion blur extent, especially for large blur length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Almeida MS, Almeida LB (2010) Blind and semi-blind deblurring of natural images. IEEE Trans Image Process 19(1):36–52

    Article  MathSciNet  Google Scholar 

  2. Almeida MS, Figueiredo MA (2013) Deconvolving images with unknown boundaries using the alternating direction method of multipliers. IEEE Trans Image Process 22(8):3074–3086

    Article  MathSciNet  Google Scholar 

  3. Almeida MS, Figueiredo MA (2013) Parameter estimation for blind and non-blind deblurring using residual whiteness measures. IEEE Trans Image Process, accepted

  4. Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2(1):183–202

    Article  MATH  MathSciNet  Google Scholar 

  5. Bracewell RN (1995) Two-dimensional imaging. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  6. Cannon M (1976) Blind deconvolution of spatially invariant image blurs with phase. IEEE Trans Acoust Speech Signal Process 24(1):58–63

    Article  Google Scholar 

  7. Carasso AS (2001) Direct blind deconvolution. SIAM J Appl Math 61(6):1980–2007

    Article  MATH  MathSciNet  Google Scholar 

  8. Chan TF, Wong CK (1998) Total variation blind deconvolution. IEEE Trans Image Process 7(3):370–375

    Article  Google Scholar 

  9. Chen X, Yang J, Wu Q (2010) Image deblur in gradient domain. Opt Eng 49(11):117,003–1–7

    Article  MathSciNet  Google Scholar 

  10. Cho TS, Paris S, Horn BK, Freeman WT (2011) Blur kernel estimation using the Radon transform. In: IEEE conference on computer vision and pattern recognition (CVPR), 2011 IEEE, pp 241–248

  11. Dai S, Wu Y (2008) Motion from blur. In: IEEE Conference on Computer Vision and Pattern Recognition 2008, CVPR 2008, IEEE, pp 1–8

  12. Damkat C (2011) Single image super-resolution using self-examples and texture synthesis. Signal Image Video P 5(3):343–352

    Article  Google Scholar 

  13. Dobeš M, Machala L, Fürst T (2010) Blurred image restoration: a fast method of finding the motion length and angle. Digit Signal Process 20(6):1677–1686

    Article  Google Scholar 

  14. Elad M, Figueiredo MA, Ma Y (2010) On the role of sparse and redundant representations in image processing. Proc IEEE 98(6):972–982

    Article  Google Scholar 

  15. Figueiredo MA, Nowak RD (2003) An em algorithm for wavelet-based image restoration. IEEE Trans Image Process 12(8):906–916

    Article  MATH  MathSciNet  Google Scholar 

  16. Jang EG, Koh BS, Choi YR (2012) A study on block-based recovery of damaged digital forensic evidence image. Multimed Tools Appl 57(2):407–422

    Article  Google Scholar 

  17. Ji H, Liu C (2008) Motion blur identification from image gradients. In: IEEE conference on computer vision and pattern recognition 2008, CVPR 2008, IEEE, pp 1–8

  18. Krahmer F, Lin Y, McAdoo B, Ott K, Wang J, Widemann D, Wohlberg B (2006) Blind image deconvolution: motion blur estimation. Technical report, Insitute of mathematics and its applications, University of Minnesota

  19. Kriechbaum A, Mörzinger R, Thallinger G (2010) A framework for unsupervised mesh based segmentation of moving objects. Multimed Tools Appl 50(1):7–28

    Article  Google Scholar 

  20. Krishnan D, Tay T, Fergus R (2011) Blind deconvolution using a normalized sparsity measure. In: IEEE conference on computer vision and pattern recognition (CVPR), 2011 IEEE, pp 233–240

  21. Oliveira J, Figueiredo M, Bioucas-Dias J (2007) Blind estimation of motion blur parameters for image deconvolution. Pattern Recogn Image Anal 4478:604–611

    Article  Google Scholar 

  22. Oliveira JP, Bioucas-Dias JM, Figueiredo MA (2009) Adaptive total variation image deblurring: a majorization–minimization approach. Signal Process 89(9):1683–1693

    Article  MATH  Google Scholar 

  23. Pavlovic G, Tekalp A (1992) Maximum likelihood parametric blur identification based on a continuous spatial domain model. IEEE Trans Image Process 1(4):496–504

    Article  Google Scholar 

  24. Rekleitis IM (1996) Steerable filters and cepstral analysis for optical flow calculation from a single blurred image. In: Vision interface, Citeseer, vol 1. pp 159–166

  25. Savakis A, Trussell H (1993) Blur identification by residual spectral matching. IEEE Trans Image Process 2(2):141–151

    Article  Google Scholar 

  26. Shao L, Caviedes J, Ma K, Bellers E (2011) Video restoration and enhancement: algorithms and applications. Signal Image Video P 5(3):269–270

    Article  Google Scholar 

  27. Starck JL, Murtagh F, Fadili JM (2010) Sparse image and signal processing: wavelets, curvelets, morphological diversity. Cambridge University Press, Cambridge

    Book  Google Scholar 

  28. Tan KC, Lim H, Tan B (1991) Restoration of real-world motion-blurred images. CVGIP: Graphical Model Image Process 53(3):291–299

    Google Scholar 

  29. Tekalp R, Biemond J (1990) Maximum likelihood image and blur identification: a unifying approach. Opt Eng 29(5):422–435

    Article  Google Scholar 

  30. Tian Y, Yap KH, He Y (2012) Vehicle license plate super-resolution using soft learning prior. Multimed Tools Appl 60(3):519–535

    Article  Google Scholar 

  31. Wright SJ, Nowak RD, Figueiredo MA (2009) Sparse reconstruction by separable approximation. IEEE Trans Signal Process 57(7):2479–2493

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The work was supported by NSFC under Grants 61074161, 61034005, and 61102138, SRFDP under Grant 20103218120014, and by Funding of Jiangsu Innovation Program for Graduate Education under Grants CXLX12_0157 and CXZZ12_0158, and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqiang Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, X., Ye, Y., Wang, J. et al. Noncausal fractional directional differentiator and blind deconvoluation: motion blur estimation. Multimed Tools Appl 74, 4849–4872 (2015). https://doi.org/10.1007/s11042-013-1845-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-013-1845-6

Keywords

Navigation