Skip to main content
Log in

Vertex angle image watermarking with optimal detector

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper presents a robust image watermarking method based on geometric modeling. Four samples of wavelet approximation transform on each image block along with the mean value of other coefficients on that block are modeled as three points in 2-D space. The length and width coordinate of the point associated with the mean value are equal. Two line segments with a shared endpoint can be drawn using these three points. The vertex angle formed between the line segments is utilized as a watermarking variable. In order to embed message bits, the vertex angle is altered by displacing of points. To preserve the imperceptibility of the watermark, geometrical tools are elegantly used to minimize the embedding distortion. Moreover, Maximum likelihood decoder is implemented at the receiver side. To this end, the probability density function of the noisy embedded angles is well approximated by the Beta distribution for wavelet approximation coefficients of images. Due to embedding in the vertex angle, the proposed scheme is not vulnerable to the gain attack. Using the low frequency components of the image blocks and the mean value of each block makes the proposed method robust to the noise and compression attacks. Experimental results confirm the validity of the theoretical analyses given in the paper and show the superiority of the method in contrast to similar techniques in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Akhaee M, Amini A, Ghorbani G, Marvasti F (2010) A solution to gain attack onwatermarking systems: logarithmic homogeneous rational dither modulation. In: 2010 IEEE international conference on acoustics speech and signal processing (ICASSP), pp 1746–1749. doi:10.1109/ICASSP.2010.5495452

  2. Akhaee M, Sahraeian S, Jin C (2011) Blind image watermarking using a sample projection approach. IEEE Trans Inf Forensic Secur 6(3):883–893. doi:10.1109/TIFS.2011.2146250

    Google Scholar 

  3. Akhaee M, Sahraeian S, Sankur B, Marvasti F (2009) Robust scaling-based image watermarking using maximum-likelihood decoder with optimum strength factor. IEEE Trans Multimedia 11(5):822–833. doi:10.1109/TMM.2009.2012922

    Google Scholar 

  4. Akhaee MA, Kalantari NK, Marvasti F (2010) Robust audio and speech watermarking using gaussian and laplacian modeling. IEEE Trans Sig Process 90(8):2487–2497. doi:10.1016/j.sigpro.2010.02.013

    Google Scholar 

  5. Balado F (2005) New geometric analysis of spread-spectrum data hiding with repetition coding, with implications for side-informed schemes. In: Proceedings IWDW, vol 4675. Siena, Italy, pp 336–350

    Google Scholar 

  6. Chen B, Wornell G (2001) Quantization index modulation: a class of provably good methods for digital watermarking and information embedding. IEEE Trans Inf Theory 47(4):1423–1443. doi:10.1109/18.923725

    Google Scholar 

  7. Conway JH, Sloane NJA, Bannai E (1998) Sphere-packings, lattices, and groups. Springer-Verlag, New York

    Google Scholar 

  8. Costa M (1983) Writing on dirty paper (corresp.) IEEE Trans Inf Theory 29(3):439–441. doi:10.1109/TIT.1983.1056659

  9. Cox I, Kilian J, Leighton F, Shamoon T (1997) Secure spread spectrum watermarking for multimedia. IEEE Trans Image Process 6(12):1673–1687. doi:10.1109/83.650120

    Google Scholar 

  10. Eggers J, Buml R, Girod B (2002) Estimation of amplitude modifications before scs watermark detection. In: Proceedings SPIE: security watermarking multimedia contents IV, vol 4675, pp 387–398

  11. Guccione P, Scagliola M (2009) Hyperbolic rdm for nonlinear valumetric distortions. IEEE Trans Inf Forensic Secur 4(1):25–35. doi:10.1109/TIFS.2008.2011080

    Google Scholar 

  12. Kalantari N, Ahadi S (2010) A logarithmic quantization index modulation for perceptually better data hiding. IEEE Trans Image Process 19(6):1504–1517. doi:10.1109/TIP.2010.2042646

    Google Scholar 

  13. Lee K, Kim D, Kim T, Moon K (2003) Em estimation of scale factor for quantization-based audio watermarking. In: Proceedings of the 2nd international workshop digital watermarking, Seoul, pp 316–327

  14. Li Q, Cox I (2007) Using perceptual models to improve fidelity and provide resistance to valumetric scaling for quantization index modulation watermarking. IEEE Trans Inf Forensics Secur 2(2):127–139. doi:10.1109/TIFS.2007.897266

    Google Scholar 

  15. Marsaglia G, Tsang W, Wang J (2003) Evaluating kolmogorov’s distribution. J Stat Softw 8(18):1–4

    Google Scholar 

  16. Massey FJ (1951) The kolmogorov-smirnov test for goodness of fit. J Am Stat Assoc 46(253):68–78

    Article  MATH  Google Scholar 

  17. Miller M, Doerr G, Cox I (2004) Applying informed coding and embedding to design a robust highcapacity watermark. IEEE Trans Image Process 13(6):792–807. doi:10.1109/TIP.2003.821551

    Google Scholar 

  18. Nezhadarya E, Wang ZJ, Ward RK (2011) Robust image watermarking based on multiscale gradient direction quantization. 6(4):1200–1213

  19. Oostveen JC, Kalker T, Staring M (2004) Adaptive quantization watermarking. In: Proceedings of the SPIE security watermarking multimedia contents, vol 5306. San Jose, pp 296–303

  20. Ourique F, Licks V, Jordan R, Perez-Gonzalez F (2005) Angle qim: a novel watermark embedding scheme robust against amplitude scaling distortions. In: Proceedings of the IEEE international conference on acoustics, speech, and signal processing 2005 (ICASSP ’05), vol 2, pp 797–800. doi:10.1109/ICASSP.2005.1415525

  21. Pearson K (1895) Mathematical contribution to the theory of evolution. ii. skew variation in homogeneous material. Philos Trans R Soc Lond 186:343–414. doi:10.1109/TIP.2003.819861

    Article  Google Scholar 

  22. Perez-Gonzalez F, Mosquera C (2008) Quantization-based data hiding robust to linear-time-invariant filtering. IEEE Trans Inf Forensic Secur 3:137–152. doi:10.1109/TIFS.2008.922057

    Google Scholar 

  23. Perez-Gonzalez F, Mosquera C, Barni M, Abrardo A (2005) Rational dither modulation: a highrate data-hiding method invariant to gain attacks. IEEE Trans Sig Process 53(10):3960–3975. doi:10.1109/TSP.2005.855407

    Google Scholar 

  24. Phadikara A, Maity SP, Verma B (2011) Region based qim digital watermarking scheme for image database in dct domain. Comput Electr Eng 37(3):339–355

    Article  Google Scholar 

  25. Shterev I, Lagendijk R (2006) Amplitude scale estimation for quantization-based watermarking. IEEE Trans Sig Process 54(11):4146–4155. doi:10.1109/TSP.2006.881216

    Google Scholar 

  26. Valizadeh A, Wang Z (2012) An improved multiplicative spread spectrum embedding scheme for data hiding. IEEE Trans Inf Forensic Secur 7(4):1127–1143. doi:10.1109/TIFS.2012.2199312

    Google Scholar 

  27. Wang Y, Doherty J, Van Dyck R (2002) A wavelet-based watermarking algorithm for ownership verification of digital images. IEEE Trans Image Process 11(2):77–88. doi:10.1109/83.982816

    Google Scholar 

  28. Wang Z, Bovik A, Sheikh H, Simoncelli E (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612. doi:10.1109/TIP.2003.819861

    Google Scholar 

  29. Wu M, Liu B (2003) Data hiding in image and video. i. fundamental issues and solutions. IEEE Trans Image Process 12(6):685–695

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hamghalam.

Appendix

Appendix

Deriving the parameters of the approximated Beta distribution on the specific interval

The Beta probability density function has a variety of shapes; hence this distribution is widely used to model various types of random variables that take values in bounded intervals. The first two moments of the Beta distribution with the shape parameters α and β on the interval [a, c] are:

$$\begin{array}{@{}rcl@{}} {\mu_{1}} &=& \frac{\alpha c + \beta a }{{\alpha + \beta }} \\ {\mu_{2}} &=& \frac{{\alpha \beta (c-a)^{2}}}{{(\alpha + \beta )^{2}(\alpha + \beta + 1)}} \end{array} $$
(28)

The method of moments (MoM), first discussed in Pearson [21], matches the equations for the mean and central moments, as needed, of a fitted distribution to the mean and central moments of the data set.

Suppose now that x = (x 1, x 2, . . . , x n ) is a random sample of size n from the Beta distribution with unknown parameter α and β. Also, let μ and σ 2 be the sample mean and variance estimate as:

$$\begin{array}{@{}rcl@{}} \mu &=& \frac{1}{N}\sum\limits_{i = 1}^{N} {{X_{i}}} \\ {\sigma^{2}} &=& \frac{1}{{N - 1}}\sum\limits_{i = 1}^{N} {({X_{i}}} - \mu {)^{2}} \end{array} $$
(29)

Substituting the sample mean and variance in (29) and rearranging, we get:

$$\begin{array}{@{}rcl@{}} \hat \alpha &=& {\frac{\mu_{r}-a}{c-a}}\left( {\frac{{{\frac{\mu_{r}-a}{c-a}}\left(1 - {\frac{\mu_{r}-a}{c-a}}\right)}}{\frac{\sigma_{r}^{2}}{(c-a)^{2}}} - 1} \right), \\ \hat \beta &=& \left(1 - {\frac{\mu_{r}-a}{c-a}}\right)\left( {\frac{{{\frac{\mu_{r}-a}{c-a}}\left(1 - {\frac{\mu_{r}-a}{c-a}}\right)}}{\frac{\sigma_{r}^{2}}{(c-a)^{2}}} - 1} \right) \end{array} $$
(30)

where \(\hat \alpha \) and \(\hat \beta \) are the estimated parameters. Here, the MoM approach is used to estimate the shape parameters of the noisy watermarked vertex angle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamghalam, M., Mirzakuchaki, S. & Ali Akhaee, M. Vertex angle image watermarking with optimal detector. Multimed Tools Appl 74, 3077–3098 (2015). https://doi.org/10.1007/s11042-013-1769-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-013-1769-1

Keywords

Navigation