Advertisement

Multimedia Tools and Applications

, Volume 74, Issue 1, pp 199–210 | Cite as

A contour tracking method of large motion object using optical flow and active contour model

  • Jin Woo Choi
  • Taeg Keun Whangbo
  • Cheong Ghil Kim
Article

Abstract

In this study, an object contour tracking method is proposed for an object with large motion and irregular shape in image sequence. To track object contour accurately, an active contour model was used, and the initial snake point of the next frame is set by defining feature points with changing curvature in the object tracked from the previous frame and calculating an optical flow at the location. Here, any misled optical flow due to irregular changes in shape or fast motion was filtered by producing a difference edge map from the previous frame, and as a solution to the energy shortage of objects with complex contour, a method of adding snake points by partial curvature was applied. Findings from experiments with real image sequence showed that the contour of an object with large motion and irregular shapes was extracted in a relatively precise way.

Keywords

Object contour tracking Optical flow Active contour model 2D-to-3D 

Notes

Acknowledgments

This research is supported by Ministry of Culture, Sports and Tourism(MCST) and Korea Creative Content Agency(KOCCA) in the Culture Technology(CT) Research & Development Program.

References

  1. 1.
    Javed O, Rasheed Z, Shafique K, Shah M (2003) Tracking across multiple cameras with disjoint views. In: Proc. IEEE International Conference on Computer Vision, Nice, France, vol 2, pp 952–957. doi: 10.1109/ICCV.2003.1238451
  2. 2.
    Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vision 1(4):321–331. doi: 10.1007/BF00133570 CrossRefGoogle Scholar
  3. 3.
    Kim J, Lee J, Kim C (2011) Video object extraction using contour information. J Inst Electron Eng Korea 48(1):33–45Google Scholar
  4. 4.
    Kim D, Lee D, Paik J (2007) Combined active contour model and motion estimation for real-time object tracking. J Inst Electron Eng Korea 44(5):64–72Google Scholar
  5. 5.
    Lee JH (2009) A study on an improved object detection and contour tracking algorithm based on local curvature. Dissertation, Paichai UniversityGoogle Scholar
  6. 6.
    Lee YS (2011) The trends and prospects of 2D-3D conversion technology. Mag Inst Electron Eng Korea 38(2):37–43Google Scholar
  7. 7.
    Lee JW, You S, Neumann U (2000) Large motion estimation for omnidirectional vision. In: Proc. IEEE Workshop on Omnidirectional Vision, Hilton Head Island, USA, pp 161–168. doi: 10.1109/OMNVIS.2000.853824
  8. 8.
    Leymarie F, Levince MD (1993) Tracking deformable object in the plane using an active contour model. IEEE Trans Pattern Anal Mach Intell 15(6):617–634. doi: 10.1109/34.216733 CrossRefGoogle Scholar
  9. 9.
    Li Y, Sun J, Shum HY (2005) Video object cut and paste. ACM Trans Graph 24(3):595–600. doi: 10.1145/1073204.1073234 CrossRefGoogle Scholar
  10. 10.
    Li B, Yuan B, Yunda S (2006) Moving object segmentation using dynamic 3D graph cuts and GMM. In: Proc. IEEE International Conference on Signal Processing, Beijing, China, vol 2, pp 16–20. doi: 10.1109/ICOSP.2006.345658
  11. 11.
    Lucas BD, Kanade T (1981) An iterative image registration technique with an application to stereo vision. In: Proc. International Joint Conference on Artificial Intelligence, Vancouver, Canada, pp 674–679Google Scholar
  12. 12.
    Okino T, Murata H, Taima K, Iinuma T, Oketani K (1996) New television with 2D/3D image conversion technologies. In: Proc. SPIE 2653 Stereoscopic Displays and Virtual Reality Systems III: 96–103. dio: 10.1117/12.237421
  13. 13.
    Pi L, Fan J, Shen C (2007) Color image segmentation for objects of interest with modified geodesic active contour method. J Math Imaging Vision 27(1):51–57. doi: 10.1007/s10851-006-9797-3 CrossRefMathSciNetGoogle Scholar
  14. 14.
    Xiong B, Yu W, Charoensak C (2004) Face contour tracking in video using active contour model. Proc Int Conf Image Process 2:1024. doi: 10.1109/ICIP.2004.1419475 Google Scholar
  15. 15.
    Xu C, Prince JL (1997) Gradient vector flow: A new external force for snakes. In: Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, pp 66–71. doi: 10.1109/CVPR.1997.609299
  16. 16.
    Zitnick CL, Kang SB, Uyttendaele M, Winder S, Szeliski R (2004) High-quality video view interpolation using a layered representation. ACM Trans Graph 23(3):600–608. doi: 10.1145/1015706.1015766 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jin Woo Choi
    • 1
  • Taeg Keun Whangbo
    • 2
  • Cheong Ghil Kim
    • 3
  1. 1.Culture Technology InstituteGachon UniversitySeongnam-citySouth Korea
  2. 2.Department of Interactive MediaGachon UniversitySeongnamSouth Korea
  3. 3.Department of Computer ScienceNamseoul UniversityCheonan-citySouth Korea

Personalised recommendations