Advertisement

Multimedia Tools and Applications

, Volume 74, Issue 5, pp 1593–1609 | Cite as

Adaptive multi-channel allocation for vehicular infrastructure mesh systems

  • Jung-Hyok Kwon
  • Eui-Jik KimEmail author
Article

Abstract

This paper focuses on a wireless solution for vehicular infrastructure systems. In order to achieve both low cost and high efficiency, infrastructures can be connected to each other in vehicular networks by a wireless link similar to a mesh router in wireless mesh networks (WMNs). However, the existing WMN solutions cannot appropriately support various vehicular applications that require high rate and low latency communications. Therefore, in this paper, we present the design and performance evaluation of an adaptive multi-channel allocation for vehicular infrastructure mesh systems (abbreviated AMCA). In order to meet both high rate and low latency communications, AMCA is designed to provide optimal channel assignment duration for each flow to efficiently utilize multiple non-overlapping channels. The performance evaluation of AMCA is conducted by the QualNet 5.0 simulator under various network scenarios to consider diverse network conditions. Simulation results show that AMCA can achieve higher network throughput and lower average packet delay than other well known wireless solutions.

Keywords

Infrastructure communications Multi-channel MAC Vehicular network Wireless mesh network 

Notes

Acknowledgments

This research was supported by Hallym University Research Fund, 2013 (HRF-201309-002).

References

  1. 1.
    Akyildiz IF, Wang X, Wang W (2005) Wireless mesh networks: a survey. Comput Netw 47:445–487. doi: 10.1016/j.comnet.2004.12.001 CrossRefzbMATHGoogle Scholar
  2. 2.
    Alasmary W, Weihua Z (2010) The mobility impact in IEEE 802.11p infrastructureless vehicular networks. in Proc. IEEE VTC-Fall 1–5. doi:  10.1109/VETECF.2010.5594542
  3. 3.
    Bianchi G (2000) Performance analysis of the IEEE 802.11 Distributed Coordination Function. IEEE J Sel Areas Commun 18:535–547. doi: 10.1109/49.840210 CrossRefGoogle Scholar
  4. 4.
    Bruno R, Conti M, Gregori M (2005) Mesh networks: commodity multihop Ad Hoc networks. IEEE Commun 43:123–131. doi: 10.1109/MCOM.2005.1404606 CrossRefGoogle Scholar
  5. 5.
    Chu IC, Chen PY, Chen WT (2012) An IEEE 802.11p Based Distributed Channel Assignment Scheme Considering Emergency Message Dissemination. in proc. Vehicular Technology Conference (VTC Spring) 1–5. doi:  10.1109/VETECS.2012.6240201
  6. 6.
    Dar K, Bakhouya M, Gaber J, Wack M (2010) Wireless communication technologies for ITS applications. IEEE Commun Mag 48:156–162. doi: 10.1109/MCOM.2010.5458377 CrossRefGoogle Scholar
  7. 7.
    Doukha Z, Moussaoui S, Haouari N, Delhoum M (2012) An efficient emergency message dissemination protocol in a vehicular Ad Hoc network. Commun Comput Inf Sci 293:459–469. doi: 10.1007/978-3-642-30507-8_39 CrossRefGoogle Scholar
  8. 8.
    Ergen M, Varaiya P (2005) Throughput analysis and admission control for IEEE 802.11a. Mob Netw Appl 10:705–706. doi: 10.1007/s11036-005-3364-9 CrossRefGoogle Scholar
  9. 9.
    Ezell S (2010) Explaining International IT Application Leadership: Intelligent Transportation Systems. ITIF - The Information Technology & Information FoundationGoogle Scholar
  10. 10.
    HamzaLup GL, Hua KA, Le M, Peng R (2008) Dynamic plan generation and real-time management techniques for traffic evacuation. IEEE Trans Intell Transp Syst 9:615–624. doi: 10.1109/TITS.2008.2006738 CrossRefGoogle Scholar
  11. 11.
    IEEE 802.11Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications (1999)Google Scholar
  12. 12.
    Kim EJ, In J, Youm S, Kang CH (2012) Delay attack-resilient clock synchronization for wireless sensor networks. IEICE TRANS INF E95-D:188–191. doi: 10.1587/transinf.E95.D.188 CrossRefGoogle Scholar
  13. 13.
    Kim EJ, Shon T, Park JJH, Jeong YS (2011) Throughput fairness enhancement using differentiated channel access in heterogeneous sensor networks. Sensors 11:6629–6644. doi: 10.3390/s110706629 CrossRefGoogle Scholar
  14. 14.
    Kim EJ, Shon T, Park JJH, Kang CH (2012) Latency bounded and energy efficient MAC for wireless sensor networks. IET Commun 6:2120–2127. doi: 10.1049/iet-com.2011.0700 CrossRefGoogle Scholar
  15. 15.
    Kim EJ, Youm S, Choi HH (2012) Queuing analysis for IEEE 802.11e networks in non-saturation environments. Int J Adv Robot Syst 9:1–9. doi: 10.5772/50911 Google Scholar
  16. 16.
    Kim EJ, Youm S, Kang CH (2011) Power-controlled topology optimization and channel assignment for hybrid MAC in wireless sensor networks. IEICE Trans Commun E94-B:2461–2472. doi: 10.1587/transcom.E94.B2461 CrossRefGoogle Scholar
  17. 17.
    Nieminen J, Janetti R (2011) Delay-throughput analysis of multi-channel MAC protocols in Ad Hoc networks. Eurasip J Wirel Commun Netw. doi: 10.1186/1687-1499-2011-108 Google Scholar
  18. 18.
    Qualnet Version 5.0. [Online]. Available: www.scalable-networks.com.
  19. 19.
    Rawat D, Popescu D, Yan G, Olariu S (2011) Enhancing VANET performance by joint adaptation of transmission power and contention window size. IEEE Trans Parallel Distrib Syst 22:1528–1535. doi: 10.1109/TPDS.2011.41 CrossRefGoogle Scholar
  20. 20.
    So J, Vaidya N (2004) Multi-Channel MAC for Ad Hoc Networks: Handling Multi-Channel Hidden Terminals Using A Single Transceiver. in Proc. ACM MobiHOC 222–233. doi:  10.1145/989459.989487
  21. 21.
    Task Group P (2009) IEEE draft amendment to standard for information technology - telecommunications and information exchange between systems - local and metropolitan networks - specific requirements - part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: Amendment: Wireless access in vehicular environments. IEEE 802.11p Draft 9.0Google Scholar
  22. 22.
    Uzcategui R, Acosta-Marum G (2009) WAVE: a tutorial. IEEE Commun Mag 47:126–133. doi: 10.1109/MCOM.2009.4939288 CrossRefGoogle Scholar
  23. 23.
    Ye F, Roy S, Niu Z (2010) Flow oriented channel assignment for multi-radio wireless mesh networks. EURASIP J Wirel Commun Netw. doi: 10.1155/2010/930414 Google Scholar
  24. 24.
    Zhang J, Wang FY, Wang K, Lin WH, Xu X, Chen C (2011) Data-driven intelligent transportation systems: a survey. IEEE Trans Intell Transp Syst 12:1624–1639. doi: 10.1109/TITS.2011.2158001 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Software R&D Lab., LIG Nex1 Co., Ltd.Seongnam-CitySouth Korea
  2. 2.Department of Ubiquitous ComputingHallym UniversityChuncheon-siSouth Korea

Personalised recommendations