Advertisement

Multimedia Tools and Applications

, Volume 74, Issue 19, pp 8421–8444 | Cite as

A new robust and efficient multiple watermarking scheme

  • Gaurav Bhatnagar
  • Q. M. Jonathan Wu
Article

Abstract

This paper presents a novel multiple watermarking scheme for copyright protection and authentication. The core idea is to segment the host image into non-overlapping blocks by the means of space filling curve and based on the amount of DCT energy in the blocks. The threshold values are then selected to embed multiple watermarks in different blocks. The watermarks are embedded into the image by modifying the singular values of the blocks. Finally, modified blocks are mapped back to their original positions using inverse space filling curve to get the watermarked image. A reliable extraction algorithm is finally developed for the extraction of watermarks from the distorted image. The feasibility of this method and its robustness against the different kind of attacks are verified by different computer simulations and analysis.

Keywords

Digital watermarking Multiple watermarks DCT energy Space filling curve Essentially non-oscillatory point-value decomposition Singular value decomposition 

Notes

Acknowledgements

This work was supported in part by the Canada Chair Research Program and the Natural Sciences and Engineering Research Council of Canada.

References

  1. 1.
    Amat S, Aràndiga F, Donat R, Garcia G, Oehsen MV (2001) Data compression with ENO schemes: a case study. Appl Comput Harmon Anal 11(2):273–288MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bhatnagar G, Raman B (2009) A new reference watermarking scheme based on DWT-SVD. Comput Stand Inter 31(5):1002–1013CrossRefGoogle Scholar
  3. 3.
    Bhatnagar G, Raman B (2011) A new robust reference logo watermarking scheme. Multimed Tools Appl 52(2):621–640CrossRefGoogle Scholar
  4. 4.
    Bhatnagar G, Raman B, Swaminathan K (2009) Dual watermarking scheme for copyright protection and authentication. J Digit Inf Manag 7(1):2–8Google Scholar
  5. 5.
    Candes EJ, Donoho DL (2006) A surprisingly effective nonadaptive representation for objects with edges. In: Schumaker LL et al (eds) Curves and surfaces. Vanderbilt University Press, Nashville, TN, pp 105–120Google Scholar
  6. 6.
    Chen R, Luo Y, Lan Y, Alsharif MR (2013) A new robust digital image watermarking algorithm based on singular value decomposition and independent component analysis. J Con Inf Tech 8(5):530–537Google Scholar
  7. 7.
    Choi Y, Aizawa K (2000) Digital watermarking using inter-block correlation: extension to JPEG coded domain. In: Proceedings of IEEE international conference information technology: coding and computing, pp 133–138Google Scholar
  8. 8.
    Cintra RJ, Dimitrov VS, de Oliveira HM, Campello de Souza RM (2009) Fragile watermarking using finite field trigonometrical transforms. Signal Process Image Commun 24(7):587–597CrossRefGoogle Scholar
  9. 9.
    Cohen A, Daubechies I, Guleryuz OG, Orchard MT (2002) On the importance of combining wavelet-based nonlinear approximation with coding strategies. IEEE Trans Inf Theory 48(7):1895–1921MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cox IJ, Miller ML, Bloom JA, Fridrich J, Kalker T (2008) Digital watermarking and steganography, 2nd edn. Morgan Kaufmann, MAGoogle Scholar
  11. 11.
    Djurovic I, Stankovic S, Pitas I (2001) Digital watermarking in the fractional Fourier transformation domain. J Netw Comput Appl 24:167–173CrossRefGoogle Scholar
  12. 12.
    Falzon F, Mallat S (1998) Analysis of low bit rate image coding. IEEE Trans Signal Process 46:1027–1042CrossRefMATHGoogle Scholar
  13. 13.
    Ganic E, Eskicioglu AM (2004) A DFT-based semi-blind multiple watermarking scheme for images. In: New York metro area networking workshop. The Graduate Center of the City University of New York, NY, pp 1–10Google Scholar
  14. 14.
    Ghouti L, Bouridane A, Ibrahim M, Boussakta S (2006) Digital image watermarking using balanced multiwavelets. IEEE Trans Signal Process 54(4):1519–1536CrossRefGoogle Scholar
  15. 15.
    Harten A (1989) ENO schemes with subcell resolution. J Comput Phys 83(1):148–184MathSciNetCrossRefGoogle Scholar
  16. 16.
    Harten A (1993) Discrete multiresolution analysis and generalized wavelets. J Appl Numer Math 12:153–193MathSciNetCrossRefGoogle Scholar
  17. 17.
    Harten A (1994) Multiresolution representation of cell-averaged data. Technical Report, UCLA CAM Report, pp 94–121Google Scholar
  18. 18.
    Harten A (1996) Multiresolution representation of data II: general framework. SIAM J Numer Anal 33(3):1205–1256MathSciNetCrossRefGoogle Scholar
  19. 19.
    Harten A, Engquist B, Osher S, Chakravarthy S (1987) Uniformly high order accurate essentially non-oscillatory schemes III. J Comput Phys 71(2):231–303MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Hu Y, Kwong S, Huang J (2004) Using invisible watermarks to protect visibly watermarked images. In: Proceedings of international symposium on circuits and systems, vol 5, pp 584–587Google Scholar
  21. 21.
    Huang W, Gou J (2006) An image fusion-based multi-watermarking algorithm. In: Proceedings of the IEEE international conference on networking, sensing and control, pp 266–269Google Scholar
  22. 22.
    Kallel M, Lapayre J-C, Bouhlel MS (2007) A multiple watermarking scheme for medical image in the spatial domain. GVIP J 7(1):37–42Google Scholar
  23. 23.
    Lai C-C, Tsai C-C (2010) Digital image watermarking using discrete wavelet transform and singular value decomposition. IEEE Trans Instrum Meas 59(11):3060–3063CrossRefGoogle Scholar
  24. 24.
    Liu R, Tan T (2002) An SVD-based watermarking scheme for protecting rightful ownership. IEEE Trans Multimed 4(1):121–128CrossRefMATHGoogle Scholar
  25. 25.
    Liu C-C, Chen W-Y (2006) Multiple-watermarking scheme for still images using the discrete cosine transform and modified code division multiple-access techniques. Opt Eng 45(7):077006CrossRefGoogle Scholar
  26. 26.
    Liu Y, Zhao J (2010) A new video watermarking algorithm based on 1D DFT and Radon transform. Signal Process 90(2):626–639CrossRefGoogle Scholar
  27. 27.
    Lu W, Sun W, Lu H (2012) Novel robust image watermarking based on subsampling and DWT. Multimed Tools Appl 60(1):31–46CrossRefGoogle Scholar
  28. 28.
    Luo W, Heileman GL, Pizano CE (2002) Fast and robust watermarking of JPEG files. In: Proceedings of IEEE Southwest symposium image analysis and interpretation, pp 158–162Google Scholar
  29. 29.
    Mintzer F, Braudaway GW (1999) If one watermark is good, are more better? In: Proceedings of IEEE international conference on acoustics, speech, and signal processing, vol 4, pp 2067–2069Google Scholar
  30. 30.
    Mohanty SP, Ramakrishnan KR, Kankanhalli M (1999) A dual watermarking technique for images. In: Proceedings of ACM international conference on multimedia. Orlando, FL, USA, pp 49–51Google Scholar
  31. 31.
    Peng Z, Liu W (2008) Color image authentication based on spatiotemporal chaos and SVD. Chaos Solitons Fractals 36(4):946–952CrossRefGoogle Scholar
  32. 32.
    Peter PHW, Oscar CA, Yeung YM (2003) A novel blind multiple watermarking technique for images. IEEE Trans Circuits Syst Video Technol 13(8):813–830CrossRefGoogle Scholar
  33. 33.
    Shih FY (2008) Digital watermarking and steganography: fundamentals and techniques. CRC Press, FLCrossRefGoogle Scholar
  34. 34.
    Song C, Sudirman S, Merabti M (2012) A robust region-adaptive dual image watermarking technique. J Vis Commun Image Represent 23(3):549–568CrossRefGoogle Scholar
  35. 35.
    Taoa P, Eskicioglub AM (2004) A robust multiple watermarking scheme in the discrete wavelet transform domain. In: Proceedings of the SPIE: internet multimedia management systems V, vol 5601, pp 133–144Google Scholar
  36. 36.
    Tsai M-J (2011) Wavelet tree based digital image watermarking by adopting the chaotic system for security enhancement. Multimed Tools Appl 52(2–3):347–367CrossRefGoogle Scholar
  37. 37.
    Wang S, Zheng D, Zhao J, Tam JW, Speranza F (2007) An image quality evaluation method based on digital watermarking. IEEE Trans Circuits Syst Video Technol 17(1):98–105CrossRefGoogle Scholar
  38. 38.
    Yao T, Que DS, Su QT (2013) A dual watermarking algorithm based on chaotic in contourlet-domain. Adv Sci Lett 19(4):1234–1237CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of WindsorWindsorCanada

Personalised recommendations