Skip to main content
Log in

Quantitative steganalysis of spatial ±1 steganography in JPEG decompressed images

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

On the basis of the analysis of JPEG error and stegonoise, we propose a novel quantitative steganalyzer for spatial ±1 steganography in JPEG decompressed images. First, we present a particular theoretical argument that the cover images, which are originally stored in JPEG format, can be approximately estimated through JPEG recompression with the detected quantization table. Then, on the basis of the relationship between the message embedding rate and the variance of the stegonoise in the discrete cosine transformation (DCT) domain, we construct a polynomial regression model to estimate the secret message length. The extensive experimental results show that the proposed scheme is computationally feasible and that it significantly outperforms the existing state-of-the-art estimators, especially for the images with high quality factors and embedding rates. The order of magnitude of the prediction error using the proposed scheme can remain in the 10−4 range, as measured by the median absolute difference. Moreover, our estimator is stable and robust with respect to the embedding rate and quality factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DCT:

Discrete Cosine Transform

LSB:

Least Significant Bit

RS:

Regular and Singular

HCF-COM:

The Center of the Mass of the Histogram Characteristic Function

AHCF-COM:

The Center Of the Mass of the Adjacency Histogram Characteristic Function

ALE:

The amplitude of local extrema

i.i.d.:

Independent identically distributed

MAE:

Mean absolute error

MAD:

Median absolute difference

IQR:

Interquartile range

References

  1. Bas P, Furon T (2007) BOWS-2 [Online]. http://bows2.gipsa-lab.inpg.fr. Accessed May 11 2010

  2. Böhme R (2008) Weighted stego-image steganalysis for JPEG covers. In: Proceedings of 10th International Workshop on Information Hiding, Springer LNCS, 5284: 178–194. doi: 10.1007/978-3-540-88961-8_13

  3. Doёrr G Image database for steganalysis studies [Online]. http://www.cs.ucl.ac.uk/staff/I.Cox/Content/Downloads.html. Accessed May 11 2009

  4. Dumitrescu S, Wu X, Wang Z (2003) Detection of LSB steganography via sample pair analysis. IEEE Trans Signal Process 51(7):1995–2007. doi:10.1109/TSP.2003.812753

    Article  Google Scholar 

  5. Fan Z, de Queiroz R (2003) Identification of bitmap compression history: JPEG detection and quantizer estimation. IEEE Trans Image Process 12(2):230–235. doi:10.1109/TIP.2002.807361

    Article  Google Scholar 

  6. Fridrich J, Goljan M, Du R (2001) Detecting LSB steganography in color and gray-scale images. IEEE Multimedia 8(4):22–28. doi:10.1109/93.959097

    Article  Google Scholar 

  7. Fridrich J, Goljan M, Du R (2001) Steganalysis based on JPEG compatibility. In: Proceedings of Special Session on Theoretical and Practical Issues in Digital Watermarking and Data Hiding, Multimedia Systems and Applications IV, pp 275–280

  8. Fridrich J, Soukal D, Goljan M (2005) Maximum likelihood estimation of secret message length embedded using ±k steganography in spatial domain. In Proceedings of the SPIE, Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents VII, San Jose, CA, 5681: 595–606

  9. Fu D, Shi Y Q, Su W (2007) A generalized benford’s law for JPEG coefficients and its applications in image forensics. In: Proceedings of the SPIE Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents IX, E. J. Delp and P. W. Wong, Eds., San Jose, CA, 6505: 1L1-1L11

  10. Harmsen J, Pearlman W (2003) Steganalysis of additive noise modelable information hiding. In Proceedings of the SPIE, Electronic Imaging, Security and Watermarking of Multimedia Contents V, Sa-nta Clara, CA, 5020: 131–142

  11. Huang HC, Chu SC, Pan JS, Huang CY, Liao BY (2011) Tabu search based multi-watermarks embedding algorithm with multiple description coding. Inform Sci 181(16):3379–3396. doi:10.1016/j.ins.2011.04.007

    Article  Google Scholar 

  12. Huang HC, Fang WC (2010) Metadata-based image watermarking for copyright protection. Simul Model Pract Theory 18(4):436–445. doi:10.1016/j.bbr.2011.03.031

    Article  Google Scholar 

  13. Ker AD (2005) Steganalysis of LSB matching in grayscale images. IEEE Signal Process Lett 12(6):441–444. doi:10.1109/LSP.2005.847889

    Article  Google Scholar 

  14. Li X, Zhang T, Zhang Y, Li WX, Li KD (2012) A novel blind detector for additive noise steganography in JPEG decompressed images. Multimedia Tools and Applications. doi:10.1007/s11042-012-1112-2

  15. Loukhaoukha K (2012) On the security of digital watermarking scheme based on singular value decomposition and tiny genetic algorithm. J Inf Hiding Multimedia Signal Process 3(2):135–141

    Google Scholar 

  16. Luo WQ, Huang FJ, Huang JW (2010) JPEG error analysis and its applications to digital image forensics. IEEE Trans Inf Forensic Secur 5(3):480–491. doi:10.1109/TIFS.2010. 2051426

    Article  Google Scholar 

  17. Luo WQ, Wang Y, Huang JW (2011) Security analysis on spatial ±1 steganography for JPEG decompressed images. IEEE Signal Process Lett 18(1):39–42

    Article  Google Scholar 

  18. NRCS Photo Gallery [Online]. http://photogallery.nrcs.usda.gov/. Accessed August 22 2009

  19. Petitcolas FAP, Anderson RJ, Kuhn MG (1999) Information hiding-a survey. In: Proceedings of the IEEE, 87(7): 1062–1078. doi: S 0018-9219(99)04946-4

  20. Pevný T, Fridrich J, Ker AD (2012) From blind to quantitative steganalysis. IEEE Transactions on Information Forensics and Security 7(2):445–454. doi:10.1109/TIFS.2011.2175918

    Article  Google Scholar 

  21. Schaefer G, Stich M (2003) UCID: An uncompressed color image database. In Proceedings of the SPIE, Electronic Imaging, Storage and Retrieval Methods and Applications for Multimedia. 5307: 472–480

  22. Sharp T (2001) An implementation of key-based digital signal steganography. In: Proceedings of the 4th International Workshop on Information Hiding, Springer LNCS, 2137: 13–26. doi:10.1007/3-540-45496-9_2

  23. Zhang J, Cox IJ, Doёrr G (2007) Steganalysis for LSB matching in images with high-frequency noise. In: Proc. IEEE 9th Workshop on Multimedia Signal Processing, pp. 385–388. doi:10.1109/MMSP.2007.4412897

  24. Zhang T, Li WX, Zhang Y, Zheng EG, Ping XJ (2010) Steganalysis of LSB matching based on statistical modeling of pixel difference distributions. Information Sciences 180:4685–4694. doi:10.1016/j.ins.2010.07.037

    Article  Google Scholar 

  25. Zhang T, Ping XJ (2003) A new approach to reliable detection of LSB steganography in natural images. Signal Process 83(10):2085–2093. doi:10.1016/S0165-1684(03)00169-5

    Article  MATH  Google Scholar 

  26. Zhang J, Zhang D (2010) Detection of LSB matching steganography in decompressed images. IEEE Signal Process Lett 17(2):141–144. doi:10.1109/LSP.2009.2035379

    Article  Google Scholar 

  27. Zheng EG, Ping XJ, Zhang T (2011) Local linear transform and new features of histogram characteristic functions for steganalysis of least significant bit matching steganography. KSII Trans Internet Inf Syst 5(4):840–855. doi:10.3837/tiis.2011.04.012

    Article  Google Scholar 

  28. Zhu X, Chen Y (2012) Performance analysis of dither modulation against composite attacks. J Inf Hiding Multimedia Signal Process 3(2):164–175

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 60903221, No. 61272490) and the National High Technology Research and Development Program of China (“863” Program, No. 2011AA010603, No. 2011AA010605). The authors would like to thank the reviewers for their insightful comments and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Li.

Appendix

Appendix

In the appendix, we show the proof of Theorem I. The process is as follows.

According to 2-D DCT and the values of u and v, three cases are discussed:

  1. I.

    When u 2 + v 2 = 0,

    $$ F\left(0,0\right)=\frac{1}{8}{\displaystyle \sum_{i=0}^7{\displaystyle \sum_{j=0}^7f\left(i,j\right)}} $$
    (18)

    As known, the i.i.d. random variable f(i, j) possesses a mean of 0 and variance σ 2. According to the property of the mean and variance, we can easily obtain the mean of F(0, 0) is 0, and its variance is σ 2. According to the Central Limit Theorem, F(0, 0) approximately follows the Gaussian distribution with a mean of 0 and variance σ 2, which is denoted by F(0, 0) ~ N(0, σ 2).

  2. II.

    When uv = 0 and u 2 + v 2 ≠ 0, without loss of generality, we set u = 0, v ≠ 0. Then, we have

    $$ F\left(0,v\right)=\frac{1}{4\sqrt{2}}{\displaystyle \sum_{i=0}^7{\displaystyle \sum_{j=0}^7f\left(i,j\right) \cos \frac{\left(2j+1\right) v\pi}{16}}},1\le v\le 7 $$
    (19)

    The mean of F(0, v) is 0. Setting its variance to B 21 , then

    $$ \begin{array}{c}\hfill {B}_1{}^2=\frac{1}{32}{\displaystyle \sum_{i=0}^7{\displaystyle \sum_{j=0}^7{\sigma}^2{ \cos}^2\frac{\left(2j+1\right) v\pi}{16}}}\hfill \\ {}\hfill =\frac{\sigma^2}{32}{\displaystyle \sum_{i=0}^7\left(4+\frac{1}{2}{\displaystyle \sum_{j=0}^7 \cos \frac{\left(2j+1\right) v\pi}{8}}\right)}\hfill \\ {}\hfill =\frac{\sigma^2}{32}{\displaystyle \sum_{i=0}^7\left(4+{\displaystyle \sum_{j=0}^3 \cos \frac{\left(2j+1\right) v\pi}{8}}\right)}\hfill \end{array} $$
    (20)

    Let \( S={\displaystyle \sum_{j=0}^3 \cos \frac{\left(2j+1\right) v\pi}{8}}= \cos \frac{ v\pi}{8}+ \cos \frac{3 v\pi}{8}+ \cos \frac{5 v\pi}{8}+ \cos \frac{7 v\pi}{8} \). When v is an odd number, \( \cos \frac{7 v\pi}{8}= \cos \left( v\pi -\frac{ v\pi}{8}\right)=- \cos \frac{ v\pi}{8} \) and \( \cos \frac{5 v\pi}{8}=- \cos \frac{3 v\pi}{8} \), then S = 0; when v is an even number, \( \cos \frac{7 v\pi}{8}= \cos \frac{ v\pi}{8} \), \( \cos \frac{5 v\pi}{8}= \cos \frac{3 v\pi}{8} \), then \( S=2\left( \cos \frac{ v\pi}{8}+ \cos \frac{3 v\pi}{8}\right)=0 \). In sum, \( \begin{array}{cc}\hfill {\displaystyle \sum_{j=0}^3 \cos \frac{\left(2j+1\right) v\pi}{8}}=0,\hfill & \hfill 1\le v\le 7\hfill \end{array} \). Substituting it into Eq. (20), we obtain B 21  = σ 2.

    According to the Central Limit Theorem, we have F(0, v) ~ N(0, σ 2), 1 ≤ v ≤ 7. Similarly, we can get F(u, 0) ~ N(0, σ 2) when v = 0 and 1 ≤ u ≤ 7.

  3. III.

    When uv ≠ 0,

    $$ F\left(u,v\right)=\frac{1}{4}{\displaystyle \sum_{i=0}^7{\displaystyle \sum_{j=0}^7f\left(i,j\right) \cos \frac{\left(2i+1\right) u\pi}{16} \cos \frac{\left(2j+1\right) v\pi}{16}}},1\le u,v\le 7 $$
    (21)

    The mean of F(u,v) is 0, which can be easily obtained. Setting its variance to B 22 , we have

    $$ \begin{array}{c}\hfill {B}_2{}^2=\frac{1}{16}{\displaystyle \sum_{i=0}^7{\displaystyle \sum_{j=0}^7{\sigma}^2{ \cos}^2\frac{\left(2i+1\right) u\pi}{16}{ \cos}^2\frac{\left(2j+1\right) v\pi}{16}}}\hfill \\ {}\hfill =\frac{\sigma^2}{16}\left({\displaystyle \sum_{i=0}^7{ \cos}^2\frac{\left(2i+1\right) u\pi}{16}}\right)\left({\displaystyle \sum_{j=0}^7{ \cos}^2\frac{\left(2j+1\right) v\pi}{16}}\right)\hfill \\ {}\hfill =\frac{\sigma^2}{16}\left(4+\frac{1}{2}{\displaystyle \sum_{i=0}^7 \cos \frac{\left(2i+1\right) u\pi}{8}}\right)\left(4+\frac{1}{2}{\displaystyle \sum_{j=0}^7 \cos \frac{\left(2j+1\right) v\pi}{8}}\right)\hfill \\ {}\hfill =\frac{\sigma^2}{16}\left(4+{\displaystyle \sum_{i=0}^3 \cos \frac{\left(2i+1\right) u\pi}{8}}\right)\left(4+{\displaystyle \sum_{j=0}^3 \cos \frac{\left(2j+1\right) v\pi}{8}}\right)\hfill \\ {}\hfill ={\sigma}^2\hfill \end{array} $$
    (22)

    According to the Central Limit Theorem, F(u, v) ~ N(0, σ 2), 1 ≤ u, v ≤ 7.

In conclusion, {F(u,v)|0 ≤ u, v ≤ 7} approximately follows a Gaussian distribution with a mean of 0 and a variance of σ 2, namely, F(u, v) ~ N(0, σ 2).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Zhang, T., Zhang, Y. et al. Quantitative steganalysis of spatial ±1 steganography in JPEG decompressed images. Multimed Tools Appl 73, 1487–1506 (2014). https://doi.org/10.1007/s11042-013-1654-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-013-1654-y

Keywords

Navigation