Advertisement

Multimedia Tools and Applications

, Volume 73, Issue 3, pp 1177–1193 | Cite as

Optimal pixel expansion of deterministic visual cryptography scheme

  • Zhengxin FuEmail author
  • Bin Yu
Article

Abstract

The optimal pixel expansion is an important parameter of deterministic visual cryptography scheme (DVCS). There are many researches have been done under different access structures and stacking operations. However, any necessary or sufficient condition has not been found about the optimal pixel expansion. In this paper, we give a necessary condition of the optimal pixel expansion of DVCS for the first time, which is suitable for any access structure and any stacking operation. Furthermore, a pixel expansion optimization algorithm has been designed to improve the existing schemes. It is found that the pixel expansion can be reduced for most DVCS based on XOR operation. Finally, we give some experimental results and comparisons to show the effectiveness of the proposed scheme.

Keywords

Visual cryptography Deterministic Necessary condition Pixel expansion 

Notes

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments. This work was supported by National Natural Science Foundation of China under Grant No. 61070086.

References

  1. 1.
    Ateniese G, Blundo C, De Santis A, Stinson DR (1996) Visual cryptography for general access structures. Inf Comput 129(2):86–106CrossRefzbMATHGoogle Scholar
  2. 2.
    Biham E, Itzkovitz A (1997) Visual cryptography with polarization. In The Dagstuhl Seminar on CryptographyGoogle Scholar
  3. 3.
    Blakley GR (1979) Safeguarding cryptographic keys. In Proceedings of the National Computer Conference, NJ, USA, 48:242–268Google Scholar
  4. 4.
    Cimato S, De Prisco R, De Santis A (2006) Probabilistic visual cryptography schemes. Comput J 49(1):97–107CrossRefGoogle Scholar
  5. 5.
    Cimato S, De Prisco R, De Santis A (2007) Colored visual cryptography without color darkening. Theor Comput Sci 374(1–3):261–276CrossRefzbMATHGoogle Scholar
  6. 6.
    Cimato S, de Santis A, Ferrara AL, Masucci B (2005) Ideal contrast visual cryptography schemes with reversing. Inf Process Lett 93:199–206CrossRefzbMATHGoogle Scholar
  7. 7.
    De Prisco R, De Santis A (2011) Using colors to improve visual cryptography for black and white images. In ICITS 2011, Springer, LNCS 6673:182–201Google Scholar
  8. 8.
    Droste S (1996) New results on visual cryptography. In Proc. Advances in Cryptography-CRYPTO’96. pp 401–415Google Scholar
  9. 9.
    Horng G, Chen T, Tsai D (2006) Cheating in visual cryptography. Des Codes Crypt 38:219–236CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Ito R, Kuwakado H, Tanaka H (1999) Image size invariant visual cryptography. IEICE Trans Fundam Electron Commun Comput Sci E82A(10):2172–2177Google Scholar
  11. 11.
    Katoh T, Imai H (1998) An extended construction method for visual secret sharing schemes. Electron Commun Jpn (Part III: Fundam Electron Sci) 81:55–63CrossRefGoogle Scholar
  12. 12.
    Lee K, Chiu P (2011) A high contrast and capacity efficient visual cryptography scheme for the encryption of multiple secret images. Opt Commun 284:2730–2741CrossRefGoogle Scholar
  13. 13.
    Liu F, Wu C, Lin X (2010) Step construction of visual cryptography schemes. IEEE Trans Inf Forensic Secur 5:27–38CrossRefGoogle Scholar
  14. 14.
    Liu F, Wu CK, Lin X (2011) Cheating immune visual cryptography scheme. IET Inf Secur 5(1):51–59CrossRefGoogle Scholar
  15. 15.
    Naor M, Shamir A (1995) Visual cryptography. Advances in cryptology-eurocrypt’94. Berlin, LNCS 950:1–12Google Scholar
  16. 16.
    Shamir A (1979) How to share a secret. Commun ACM 22(11):612–613CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Shyu SJ, Chen MC (2011) Optimum pixel expansions for threshold visual secret sharing schemes. IEEE Trans Inf Forensic Secur 6(3):960–969CrossRefGoogle Scholar
  18. 18.
    Tuyls P, Hollmann HDL, van Lint JH, Tolhuizen L (2005) Xor-based visual cryptography schemes. Des Codes Crypt 37:169–186CrossRefzbMATHGoogle Scholar
  19. 19.
    Tuyls P, Kevenaar T, Schrijen GJ, Staring T, Dijk MV (2004) Security displays enabling secure communications. In First Int. Conf. Pervasive Computing, Boppard, Germany, vol 2802. Berlin Springer LNCS, pp 271–284Google Scholar
  20. 20.
    Wang DS, Yi F, Li XB (2009) On general construction for extended visual cryptography schemes. Pattern Recognit 42(11):3071–3082CrossRefzbMATHGoogle Scholar
  21. 21.
    Weir J, Yan W (2012) Visual cryptography and its applications. Ventus Publishing ApS, DenmarkGoogle Scholar
  22. 22.
    Yang CN (2004) New visual secret sharing schemes using probabilistic method. Pattern Recognit Lett 25:481–494CrossRefGoogle Scholar
  23. 23.
    Yang CN, Chen TS (2005) Size-adjustable visual secret sharing schemes. IEICE Trans Fundam E88-A(9):2471–2474CrossRefGoogle Scholar
  24. 24.
    Yang CN, Chung T (2010) A general multi-secret visual cryptography scheme. Opt Commun 283:4949–4962CrossRefGoogle Scholar
  25. 25.
    Yang CN, Wang CC, Chen TS (2006) Real perfect contrast visual secret sharing schemes with reversing. ACNS 2006, LNCS, pp 433–447Google Scholar
  26. 26.
    Yang CN, Wang CC, Chen TS (2008) Visual cryptography schemes with reversing. Comput J 51:710–722CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Zhengzhou Information Science and Technology InstituteZhengzhouPeople’s Republic of China
  2. 2.Department of Computer Science and Information EngineeringZhengzhou Information Science and Technology InstituteZhengzhouPeople’s Republic of China

Personalised recommendations