Advertisement

Multimedia Tools and Applications

, Volume 73, Issue 1, pp 291–307 | Cite as

Enhanced long-range personal identification based on multimodal information of human features

  • Hsin-Chun TsaiEmail author
  • Bo-Wei Chen
  • Jhing-Fa Wang
  • Anand Paul
Article

Abstract

This work presents an enhanced long-range personal identification scheme using multimodal information of human features. Multimodal information includes multiview face detection, height measurement and face recognition. Multiview faces are estimated by collecting five face databases that correspond to left, half-left, right, half-right, and frontal faces, respectively. The sequences of parameters based on four detectors are also designed to determine the face direction. The detectors use the head-shoulder region, frontal face, profile face, and eyes detector respectively. In addition to determining when individuals enter the monitoring area, the multiview face detection module also describes the detected face direction. This result allows the identification system to select the face database of a specific direction to identify subsequent faces. Additionally, the height measurement module estimates individual height by calculating the vanishing points and lines. The module concept is based on single-view metrology. The measured information further refines the face database selected by multiview face detection and minimizes the candidates for face identification. Importantly, the proposed method integrates the multimodal information based on face direction, height and face features to refine the database and analyzes the information to determine the identity of a person. In this work, images from a monitoring area 5.6 m away from a camera are captured using an inexpensive digital web camera. The experimental results show that the proposed method can improve the accuracy rate by more than 21 % in contrast with the baselines and correspondingly demonstrates the effectiveness of the proposed idea.

Keywords

Height measurement Face recognition Multiview face detection Personal identification 

References

  1. 1.
    Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720CrossRefGoogle Scholar
  2. 2.
    BenAbdelkader C, Cutler R, Davis L (2002) Person identification using automatic height and stride estimation. 4, Institute of Electrical and Electronics Engineers Inc., pp 377–380Google Scholar
  3. 3.
    Berger M (1987) Geometry II. Springer, Berlin/Heidelberg p 406. http://www.springer.com/mathematics/geometry/book978-3-540-17015-0
  4. 4.
    Choi YH, Tak YS, Rho S, Hwang E (2013) Skin feature extraction and processing model for statistical skin age estimation. Multimed Tools Appl 64(2):227–247CrossRefGoogle Scholar
  5. 5.
    Choras RS (2010) Multimodal biometric personal authentication integrating iris and retina images. Adv Intell Soft Comput 84:121–131CrossRefGoogle Scholar
  6. 6.
    Criminisi A (2001) Accurate visual metrology from single and multiply uncalibrated images. Springer-Verlag London Ltd, p 197Google Scholar
  7. 7.
    Criminisi A (2002) Single-view metrology: algorithms and applications. DAGM-Symposium on Pattern Recognition, September 2002Google Scholar
  8. 8.
    Criminisi A, Reid I, Zisserman A (2000) Single view metrology. Int J Comput Vis 40(2):123–148CrossRefzbMATHGoogle Scholar
  9. 9.
    Dantcheva A, Velardo C, D’Angelo A, Dugelay JL (2011) Bag of soft biometrics for person identification. Multimed Tools Appl 51(2):739–777CrossRefGoogle Scholar
  10. 10.
    Feng W, Xie L, Zeng J, Liu ZQ (2009) Audio-visual human recognition using semi-supervised spectral learning and hidden Markov models. J Vis Lang Comput 20(3):188–195CrossRefGoogle Scholar
  11. 11.
    Hrechak AK, McHugh JA (1990) Automated fingerprint recognition using structural matching. Pattern Recog 23(8):893–904CrossRefGoogle Scholar
  12. 12.
    Jain AK, Dass SC, Nandakumar K (2004) Can soft biometric traits assist user recognition? biometric technology for human identification, April 12, 2004 - April 13, 2004. SPIE, Orlando, pp 561–572Google Scholar
  13. 13.
    Kawulok M (2010) Energy-based blob analysis for improving precision of skin segmentation. Multimed Tools Appl 49(3):463–481CrossRefGoogle Scholar
  14. 14.
    Kuan TW, Tsai HC, Wang JF, Wang JC, Chen BW, Lin ZY (2012) A new hybrid and dynamic fusion of multiple experts for intelligent porch system. Expert Syst Appl 39(10):9288–9296CrossRefGoogle Scholar
  15. 15.
    Liao Y, Vemuri VR (2002) Use of K-nearest neighbor classifier for intrusion detection. Comput Secur 21(5):439–448CrossRefGoogle Scholar
  16. 16.
    Liu C, Wechsler H (2002) Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans Image Process 11(4):467–476CrossRefGoogle Scholar
  17. 17.
    Martinez AM, Kak AC (2001) PCA versus LDA. IEEE Trans Pattern Anal Mach Intell 23(2):228–233CrossRefGoogle Scholar
  18. 18.
    Moayer B, Fu KS (1986) A tree system approach for fingerprint pattern-recognition. IEEE Trans Pattern Anal Mach Intell 8(3):376–387CrossRefGoogle Scholar
  19. 19.
    Swets DL, Weng JJ (1996) Using discriminant eigenfeatures for image retrieval. IEEE Trans Pattern Anal Mach Intell 18(8):831–836CrossRefGoogle Scholar
  20. 20.
    Tsai H-C, Wang W-C, Wang J-C, Wang J-F (2009) Long distance person identification using height measurement and face recognition. 2009 I.E. region 10 conference, TENCON 2009, November 23, 2009–November 26, 2009. Institute of Electrical and Electronics Engineers Inc, Singapore, pp 1–4Google Scholar
  21. 21.
    Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86CrossRefGoogle Scholar
  22. 22.
    Varetskyy Y, Rusyn B, Molga A, Ignatovych A (2010) A new method of fingerprint key protection of grid credential. Adv Intell Soft Comput 84:99–103CrossRefGoogle Scholar
  23. 23.
    Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. 2001 I.E. computer society conference on computer vision and pattern recognition, December 8, 2001–December 14, 2001. Institute of Electrical and Electronics Engineers Computer Society, Kauai, pp I511–I518Google Scholar
  24. 24.
    Viola P, Jones MJ (2004) Robust real-time face detection. Int J Comput Vis 57(2):137–154CrossRefGoogle Scholar
  25. 25.
    Wildes RP (1997) Iris recognition: an emerging biometric technology. Proc IEEE 85(9):1348–1363CrossRefGoogle Scholar
  26. 26.
    Xiao QH (2007) Biometrics - technology, application, challenge, and computational intelligence solutions. IEEE Comput Intell Mag 2(2):5CrossRefGoogle Scholar
  27. 27.
    Zewail R, Elsafi A, Saeb M, Hamdy N (2004) Soft and hard biometrics fusion for improved identity verification. The 2004 47th midwest symposium on circuits and systems - conference proceedings, July 25, 2004–July 28, 2004. Institute of Electrical and Electronics Engineers Inc, Hiroshima, pp I225–I228Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Hsin-Chun Tsai
    • 1
    Email author
  • Bo-Wei Chen
    • 1
  • Jhing-Fa Wang
    • 1
  • Anand Paul
    • 2
  1. 1.Department of Electrical EngineeringNational Cheng Kung UniversityTainanTaiwan
  2. 2.School of Computer Science and EngineeringKyungpook National UniversityDaeguSouth Korea

Personalised recommendations