Advertisement

Multimedia Tools and Applications

, Volume 72, Issue 2, pp 1867–1886 | Cite as

Multi-secret visual cryptography with deterministic contrast

  • Bin Yu
  • Gang Shen
Article

Abstract

The multi-secret visual cryptography scheme (MVCS) allows for the encryption of multiple secret images into a given image area. The previous works on MVCS with probabilistic contrast can not guarantee that every original pixel will be reconstructed correctly. However, MVCS with deterministic contrast can reconstruct every original pixel with simple computation for high-end applications, but they are all simple 2-out-of-2 cases. These drawbacks limit the applicability of MVCSs existed. Based on ringed shares, MVCS with deterministic contrast has been defined in this paper. Furthermore, an (k, n)-MVCS with deterministic contrast, which makes the number of secret images not restricted, is proposed on the basis of the share rotation algorithm and the basis matrices of single secret sharing visual cryptography. Experimental results show that our scheme is the first (k, n)-MVCS with deterministic contrast, which can be applied on any k and n.

Keywords

Visual cryptography Multiple secret images Deterministic contrast Ringed shares 

References

  1. 1.
    Ateniese G, Blundo C, De Santis A, Stinson DR (1996) Visual cryptography for general access structures. Inf Comput 129(2):86–106CrossRefMATHGoogle Scholar
  2. 2.
    Blakley GR (1979) Safeguarding cryptographic keys. In Proc. National Comput. Conf. pp 313–317Google Scholar
  3. 3.
    Cimato S, De Prisco R, De Santis A (2005) Optimal colored threshold visual cryptography schemes. Des Codes Crypt 35(3):311–335CrossRefMATHGoogle Scholar
  4. 4.
    Cimato S, DeSantis A, Ferrara AL, Masucci B (2005) Ideal contrast visual cryptography schemes with reversing. Inf Process Lett 93(4):199–206CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Droste S (1996) New results on visual cryptography. Proc Adv Cryptogr LNCS 1109:401–415MathSciNetGoogle Scholar
  6. 6.
    Feng JB, Wu HC, Tsai CS, Chang YF, Chu YP (2008) Visual secret sharing for multiple secrets. Pattern Recognit 41(12):3572–3581CrossRefMATHGoogle Scholar
  7. 7.
    Fu ZX, Yu B, Fang LG (2010) The multi-secret visual cryptography based on ring shares. J Electron Inf Technol 32(4):880–883CrossRefGoogle Scholar
  8. 8.
    Hofmeister T, Krause M, Simon HU (2000) Contrast-optimal k out of n secret sharing schemes in visual cryptography. Theor Comput Sci 240(2):471–485CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Hou YC (2003) Visual cryptography for color images. Pattern Recognit 36(7):1619–1629CrossRefGoogle Scholar
  10. 10.
    Hsu HC, Chen TS, Lin YH (2004) The ring shadow image technology of visual cryptography by applying diverse rotating angles to hide the secret sharing. In Proceedings of the 2004 IEEE International Conference on Networking, Sensing & Control, pp 996–1001Google Scholar
  11. 11.
    Lee KH, Chiu PL (2010) A high contrast and capacity efficient visual cryptography scheme for the encryption of multiple secret images. Opt Commun 284(12):2730–2741CrossRefGoogle Scholar
  12. 12.
    Lin SJ, Chen SK, Lin JC (2010) Flip visual cryptography (FVC) with perfect security, conditionally-optimal contrast and no expansion. J Vis Commun Image Represent 21(8):900–916CrossRefGoogle Scholar
  13. 13.
    Liu F, Wu CK, Lin XJ (2008) Color visual cryptography schemes. IET Inf Secur 2(4):151–165CrossRefGoogle Scholar
  14. 14.
    MacPherson LA (2002) Grey level visual cryptography for general access structures. Master Thesis, University of Waterloo, Waterloo, ON, CanadaGoogle Scholar
  15. 15.
    Naor M, Shamir A (1995) Visual cryptography. Proc EUROCRYPT 94:1–12MathSciNetGoogle Scholar
  16. 16.
    Shamir A (1979) How to share a secret. Commun ACM 22(11):612–613CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Shyu SJ, Chen MC (2011) Optimum pixel expansions for threshold visual secret sharing schemes. IEEE Trans Inf Forensics Secur 6(3):960–969CrossRefGoogle Scholar
  18. 18.
    Shyu SJ, Chen K (2011) Visual multiple secret sharing based upon turning and flipping. Inform Sci 181(15):3246–3266CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Shyu SJ, Huang SY, Lee YK, Wang RZ, Chen K (2007) Sharing multiple secrets in visual cryptography. Pattern Recognit 40(12):3633–3651CrossRefMATHGoogle Scholar
  20. 20.
    Wu HC, Chang CC (2005) Sharing visual multi-secrets using circle shares. Comput Stand Interfaces 134(28):123–135CrossRefGoogle Scholar
  21. 21.
    Wu CC, Chen LH (1998) A study on visual cryptography, Master Thesis. PhD thesis, Institute of Computer and Information Science, National Chiao Tung University, Taiwan, R.O.CGoogle Scholar
  22. 22.
    Yang CN (2004) New visual secret sharing schemes using probabilistic method. Pattern Recogn Lett 25(4):481–494CrossRefGoogle Scholar
  23. 23.
    Yang CN, Chung TH (2010) A general multi-secret visual cryptography scheme. Opt Commun 283(24):4949–4962CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Computer Science and Information EngineeringZhengzhou Information Science and Technology InstituteZhengzhouPeople’s Republic of China
  2. 2.Zhengzhou Information Science and Technology InstituteZhengzhouPeople’s Republic of China

Personalised recommendations