Advertisement

Multimedia Tools and Applications

, Volume 72, Issue 2, pp 1193–1213 | Cite as

Sensitivity analysis of pose recovery from multi-center panoramas

  • Fay Huang
Article

Abstract

A set of multi-view panoramas may consist of various types of panoramic images in cylindrical representation, such as single-center, multi-center, concentric, symmetric, or (after a transformation onto a cylinder) catadioptric panoramas. In comparison with single-center imaging models, there are fewer studies on multiple view geometry for the multi-center cases. A generalized epipolar curve equation has been derived in a book publication in 2008. This article extends such result and presents a cost function whose minimization solves the camera pose estimation problem. Due to the non-linearity of the multi-centered projection geometry, the modeling of sensor pose estimation typically results into non-linear and highly complicated forms which incur numerical instability. This article focuses on evaluating a method for solving the pose estimation problem under a minor geometrical constraint, namely leveled panoramas. Extensive synthetic and real experiments along with a formal sensitivity analysis are carried out to demonstrate the robustness of the proposed method.

Keywords

Panoramic imaging Pose estimation Sensor-line camera 

Notes

Acknowledgements

This project was sponsored by the National Science Council of Taiwan, R.O.C. (NSC 99-2221-E-197 -024 and NSC 100-2221-E-197 -028). The author thanks Prof. Reinhard Klette for various valuable comments and Yun-Hao Xie and Yin-Wei Chang for help in performing some of the experiments.

References

  1. 1.
    Chen SE (1995) QuickTimeVR - an image-based approach to virtual environment navigation. In: Proc. SIGGRAPH’95, Los Angeles, California, USA, pp 29–38Google Scholar
  2. 2.
    Geyer C, Daniilidis K (2000) A unifying theory of central panoramic systems and practical applications. In: Proc. ECCV’00, Dublin, Ireland, pp 445–461Google Scholar
  3. 3.
    Hicks RA, Bajcsy R (2000) Catadioptric sensors that approximate wide-angle perspective projections. In: Proc. CVPR’00, Hilton Head, SC, USA, pp 545–551Google Scholar
  4. 4.
    Huang F, Klette R (2010) Stereo panorama acquisition and automatic image disparity adjustment for stereoscopic visalization. Multimed Tools Appl 47(3):353–377CrossRefGoogle Scholar
  5. 5.
    Huang F, Wei S-K, Klette R (2001) Geometrical fundamentals of polycentric panoramas. In: Proc. ICCV’01., Vancouver, Canada, pp I:560–565Google Scholar
  6. 6.
    Huang F, Klette R, Scheibe K (2008) Panoramic imaging: sensor-line cameras and laser range-finders. Wiley, West Sussex, EnglandGoogle Scholar
  7. 7.
    Huang F, Klette R, Xie Y-H (2008) Pose estimation for sensors which capture cylindric panroamas. In: Proc. CIARP’08, Havana, Cuba, pp 593–601Google Scholar
  8. 8.
    Huang F, Klette R, Xie Y-H (2009) Sensor pose estimation from multi-center cylindrical panroamas. In: Proc. PSIVT’09, Tokyo, Japan, 2009, pp 60–70Google Scholar
  9. 9.
    Ishiguro H, Yamamoto M, Tsuji S (1992) Omni-directional stereo. PAMI 14(2):257–262CrossRefGoogle Scholar
  10. 10.
    Kang S-B, Szeliski R (1997) 3-d scene data recovery using omnidirectional multibaseline stereo. IJCV 25(2):167–183CrossRefGoogle Scholar
  11. 11.
    Kang S-B, Desikan P (1998) Virtual navigation of complex scenes using clusters of cylindrical panoramic images. In: Graphics interface, pp 223–232Google Scholar
  12. 12.
    Klette R, Rosenfeld A (2004) Digital geometry. Morgan Kaufmann, San Francisco (2004)Google Scholar
  13. 13.
    Li Y, Shum H-Y, Tang C-K, Szeliski R (2004) Stereo reconstruction from multiperspective panoramas. IEEE Trans Pattern Anal Mach Intell 26(1):45–62CrossRefGoogle Scholar
  14. 14.
    Li H, Hartley RI, Kim J-H (2008) A linear approach to motion estimation using generalized camera models. In: Proc. CVPR’08, Alaska, USA, pp 1–8Google Scholar
  15. 15.
    Murray D (1995) Recovering range using virtual multicamera stereo. CVIU 61(2):285–291Google Scholar
  16. 16.
    Nayar S (1998) Catadioptic omnidirectional cameras. In: Proc. CVPR’97, San Jaun, Puerto Rico, USA, pp 482–488Google Scholar
  17. 17.
    Pajdla T (2002) Stereo with oblique cameras. IJCV 47(1–3):161–170CrossRefMATHGoogle Scholar
  18. 18.
    Peleg S, Ben-Ezra M (1999) Stereo panorama with a single camera. In: Proc. CVPR’99, Fort Collins, Colorado, USA, pp 395–401Google Scholar
  19. 19.
    Reulke R, Scheele M (1998) Der drei-zeilen ccd-stereoscanner waac: grundaufbau und anwendungen in der photogrammetrie. Photogramm Fernerkund Geoinf 3:157–163Google Scholar
  20. 20.
    Scheibe K, Suppa M, Hirschmäller H, Strackenbrock B, Huang F, Liu R, Hirzinger G (2006) Multi-scale 3d-modeling. In: Proc. PSIVT’06, Hsinchu, Taiwan, pp 96–107Google Scholar
  21. 21.
    Shum H-Y, He L-W (1999) Rendering with concentric mosaics. In: Proc. SIGGRAPH’99, Los Angeles, California, USA, pp 299–306Google Scholar
  22. 22.
    Sturm P (2005) Multi-view geometry for general camera models. In: Proc. CVPR’05, San Diego, California, USA, pp 206–202Google Scholar
  23. 23.
    Zomet A, Feldman D, Peleg S, Weinshall D (2003) Mosaixing new views: the crossed-slit porjection. PAMI 25(6):741–754CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.CSIENational Ilan UniversityYi-LanTaiwan

Personalised recommendations