Multimedia Tools and Applications

, Volume 72, Issue 1, pp 503–514 | Cite as

Optimized design of automatic image mosaic



Virtual reality technology has been widely used in the fields of aerospace, robotics remote operation and biology medicine and so on. Panoramic image mosaic is one of the very important parts. Since photographs taken by the ordinary camera may appear distorted, overlapping and tilting, we propose a wide mosaic algorithm used in the projection transformation in this paper. The algorithm first uses the Harris operator to extract corners, adopting the improved corner response function for avoiding the randomness of k value. Then fast RANSAC method is used to match the images approximately, and the cross-correlation method of gray window as the center of feature points is used to the redundant feature points for further exact match. And then it need solve the model transformation parameters between two images according to these corners information and obtain the projection transformation matrix. Finally, the application of image morphing technique is for reconstructing the image having spatial transform, the result of which are carried on stitching seamlessly with another source image. Experimental results show that the algorithm is effective to achieve a good mosaic.


Image mosaic Projection transformation Image morphing Inverse mapping 



Authors like to express their thanks to anonymous reviewers for their help in revising the manuscript. This work is supported in part by the Natural Science Foundation of China (NSFC) under Grant No. 61071193.


  1. 1.
    Bao P, Xu D (2000) Multiresolution image morphing in wavelet domain. In: IV2000: Proceedings of the Fourth International Conference on Information Visualisation, IEEE, London, UK, 2000, 309–314Google Scholar
  2. 2.
    Brown M, Lowe DG (2003) Recognising panoramas. In: ICCV’03: Proceedings of the Ninth IEEE International Conference on Computer Vision, IEEE Computer Society, Washington, DC, USA, p. 1218Google Scholar
  3. 3.
    Burt P, Adelson E (1983) A multiresolution spline with application to image mosaics. ACM Trans Graph 2(4):217–236CrossRefGoogle Scholar
  4. 4.
    Fontanelli D (2007) California Univ., Los Angeles. A Fast RANSAC-Based Registration Algorithm for Accurate Localization in Unknown Environments using LIDAR Measurements. In: ICCV’03: Proceedings of the 3rd IEEE International Conference on Automation Science and Engineering, IEEE, Scottsdale, AZ, USA, 597–602Google Scholar
  5. 5.
    Gao G, Jia K (2007) A new image mosaics algorithm based on feature points matching. In: ICICIC’07: Proceedings of the Second International Conference on Innovative Computing, Information and Control, 471–474Google Scholar
  6. 6.
    Harris C, Stephens MA (1988) Combined Corner and Edge Detector. In: Proceedings Fourth Alvey Vision Conference, Manchester, UK, 147–151Google Scholar
  7. 7.
    Hsu CT (2000) Feature-based video mosaic. Proc. ICIP, Vancouver, Canada, pp 887–890Google Scholar
  8. 8.
    Mattson P, Kim D, Kim Y (1998) Generalized image warping using enhanced lookup tables. Int J Imaging Syst Technol 9(6):475–483CrossRefGoogle Scholar
  9. 9.
    Matungka R, Zheng YF, Ewing RL (2009) Image registration using adaptive polar transform. IEEE Transactions on Image Processing 18(10):2340–2354CrossRefMathSciNetGoogle Scholar
  10. 10.
    Reddy B, Chatterji B (1996) An FFT-based technique for translation, rotation, and scale-invariant image registration. IEEE Transactions on Image Processing 5(8):1266–1271CrossRefGoogle Scholar
  11. 11.
    Schmid C, Mohr R, Bauckhage C (1998) Comparing and evaluating interest points. In: Proceedings of the Sixth International Conference on Computer Vision, 1998, 230–235Google Scholar
  12. 12.
    Szeliski R (1996) Video mosaics for virtual environments. IEEE Comput Graph Appl 16(2):22–30CrossRefGoogle Scholar
  13. 13.
    Zitová B, Flusser J (2003) Image registration methods: a survey. Image and Vision Computing 21(11):977–1000CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Science and Technology on Electronic Test & Measurement Laboratory and Key Laboratory of Instrumentation Science & Dynamic Measurement(Ministry of Education)Information and communication engineering institute, North University of ChinaTaiyuanChina
  2. 2.Party school of shanxi provincial committee of the C.P.CTaiyuanChina

Personalised recommendations