Multimedia Tools and Applications

, Volume 73, Issue 2, pp 779–801 | Cite as

A framework for background modelling and shadow suppression for moving object detection in complex wavelet domain



This paper describes a simple, robust and efficient framework for background subtraction and cast shadow suppression in complex wavelet domain. A background subtraction approach exploiting noise resilience capability of wavelet domain combined with local spatial coherence and median filter in the training stage is proposed. A novel shadow suppression scheme based on directional coefficients of Daubechies complex wavelet transform is introduced. The effectiveness of the proposed approach is demonstrated via qualitative and quantitative evaluation measures on both indoor and outdoor video sequences. The experimental results show that the proposed approach outperforms state-of-the-art methods.


Background subtraction Shadow suppression Complex Wavelet domain 


  1. 1.
    ATON, Autonomous Agents for On-Scene Networked Incident Management, 2000, [Online]. Available:
  2. 2.
    Avery RP, Zhang G, Wang Y, Nihan N (2007) An investigation into shadow removal from traffic images transportation research record, J Transport Res BoardGoogle Scholar
  3. 3.
    Cheng FH, Chen YL (2006) Real time multiple objects tracking and identification based on discrete wavelet transform. Pattern Recogn 39(6):1126–1139CrossRefMATHGoogle Scholar
  4. 4.
    Chien SY, Ma SY, Chen LG (2002) Efficient moving object segmentation algorithm using background registration technique. IEEE Trans Circ Syst Video Tech 12:577–585CrossRefGoogle Scholar
  5. 5.
    Clonda D, Lina JM, Goulard B (2004) Complex Daubechies wavelets: properties and statistical image modelling. Signal Process (Elsevier) 84:1–23CrossRefMATHGoogle Scholar
  6. 6.
    Cucchiara R, Piccardi M, Prati A (2003) Detecting moving objects, ghosts, and shadows in video streams. IEEE Trans Pattern Anal Mach Intell 25(10):1337–1342CrossRefGoogle Scholar
  7. 7.
    Elgammal A, Duraiswami R, Harwood D, Davis LS (2002) Background and Foreground Modeling using Non-parametric Kernel Density Estimation for Visual Surveillance, Proceedings of the IEEE, pp 1151–1163Google Scholar
  8. 8.
    Fang LZ, Qiong WY, Sheng YZ (2008) A method to segment moving vehicle cast shadow based on wavelet transform. Pattern Recognit Lett 29(16):2182–2188CrossRefGoogle Scholar
  9. 9.
    Guan Y-P (2010) Spatio-temporal motion-based foreground segmentation and shadow suppression. IET Comput Vis 4(1):50–60CrossRefGoogle Scholar
  10. 10.
    Heikkila M, Pietikainen M (2006) A texture-based method for modeling the background and detecting moving objects. IEEE Trans Pattern Anal Mach Intell 28(4):657–662CrossRefGoogle Scholar
  11. 11.
    Hu WM, Tan TN, Wang L, Maybank S (2004) A survey on visual surveillance of object motion and behaviors. IEEE Trans Syst Man Cybern 34(3):334–352CrossRefGoogle Scholar
  12. 12.
    Huang J, Hsieh W (2003) Wavelet-based moving object segmentation. IEE Electron Lett 39(19):1380–1382CrossRefGoogle Scholar
  13. 13.
    Huang J, Hsieh W (2004) Double-change-detection method for wavelet-based moving-object segmentation, IEE Electron Lett, vol. 40Google Scholar
  14. 14.
    Kim H, Sakamoto R, Kitahara I, Toriyama T, Kogure K (2007) Robust silhouette extraction technique using background subtraction with multiple thresholds, Opt Eng 46(9)Google Scholar
  15. 15.
    Lina J-M (1997) Image processing with complex Daubechies wavelets. J Math Imag Vis 7(3):211–223MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lu Y, Xin H, Kong J, Li B, Wang Y (2006) Shadow removal based on shadow direction and shadow attributes, Proc. Int. Conf. Computational Intelligence for Modelling, Control and Automation, and Intelligent Agents, Web Technologies and Internet Commerce, pp 37–41Google Scholar
  17. 17.
    McKenna SJ, Jabri S, Duric Z, Wechsler H (2000) Tracking interacting people, Proc IEEE Int Conf Automat Face Gesture Recogn, pp 348–353Google Scholar
  18. 18.
    Parks DH, Fels SS (2008) Evaluation of Background Subtraction Algorithms with Post-processing, Proc IEEE Int Conf Adv Video Signal-based Surveill, pp 192–199Google Scholar
  19. 19.
    PETS, Performance Evaluation of Tracking and Surveillance, 2009, [Online]. Available:
  20. 20.
    Piccardi M (2004) Background subtraction techniques: a review, Proc IEEE Int Conf Syst Man Cybern, pp 3099–3104Google Scholar
  21. 21.
    Prati A, Mikic I, Trivedi MM, Cucchiara R (2003) Detecting moving shadows: algorithms and evaluation. IEEE Trans Pattern Anal Mach Intell 25(6):918–923CrossRefGoogle Scholar
  22. 22.
    Romberg JK, Choi H, Baraniuk RG (2001) Multiscale edge grammars for complex wavelet transforms, Proc IEEE Int Conf Image Proc, pp 614–617Google Scholar
  23. 23.
    Salvador E, Cavallaro A, Ebrahimi T (2004) Cast shadow segmentation using invariant color features. Comput Vis Image Understand 95(3):238–259CrossRefGoogle Scholar
  24. 24.
    Selesnick IW, Baraniuk RG, Kingsbury NG (2005) The Dual-Tree Complex Wavelet Transform, IEEE Signal Process Mag, pp 123–151Google Scholar
  25. 25.
    Stauder J, Mech R, Ostermann J (1999) Detection of moving cast shadows for object segmentation. IEEE Trans Multimed 1(1):65–76CrossRefGoogle Scholar
  26. 26.
    Stauffer C, Grimson WEL (1999) Adaptive Background Mixture Models for Real-Time Tracking, Proc IEEE Int Conf Comput Vis Pattern Recogn, pp 246–252Google Scholar
  27. 27.
    VSMFD, Video Scene Modeling and Foreground Detection, 2008 [Online], Available:
  28. 28.
    Wren C, Azarbayejani A, Darrell T, Pentland AP (1997) Pfinder: real time tracking of the human body. IEEE Trans Pattern Anal Mach Intell 19(7):780–785CrossRefGoogle Scholar
  29. 29.
    Yilmaz A, Javed O, Shah M (2006) Object Tracking: A Survey, ACM J Comput Surv 38:(4), Article 13Google Scholar
  30. 30.
    Zivkovic Z, van der Heijden F (2006) Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognit Lett 27(7):773–780CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.GLA UniversityMathuraIndia
  2. 2.Indian Institute of Information TechnologyAllahabadIndia

Personalised recommendations