Advertisement

Multimedia Tools and Applications

, Volume 71, Issue 3, pp 1673–1697 | Cite as

A new approach to spatial compression of stereoscopic videos

  • Leonardo A. de Andrade
  • Matheus R. U. Zingarelli
  • Rodolfo R. Silva
  • Rudinei Goularte
Article
  • 171 Downloads

Abstract

This paper presents a new spatial compression method specifically designed for stereo videos. Different form current compressors, which simply apply known 2D compression techniques, the method proposed here was developed taking into account specificities of the components of the spatial compression process which may impact the correct depth visualization, named Chrominance Subsampling, Discrete WaveletTransform (DWT) and Quantization. Each component was evaluated analyzing where datalosses occur and proposing ways to provide a good balance between compression ratio and image quality, minimizing losses in depth perception. The evaluations were made using standard objective (PSNR) and subjective (DSCQS) metrics, applied to an anaglyphic stereoscopic video base. The results showedour method is competitive regarding compression rate and providessuperior image quality.

Keywords

Multimedia coding Digital video Anaglyphic stereoscopic video Spatial video compression 

Notes

Acknowledgments

The authors would like to thank FAPESP and CNPq Brazilian agencies for their financial support on this project.

References

  1. 1.
    Acharya T, Tsai PS (2004) JPEG2000 Standard for Image Compression—Concepts, Algotithms and VLSI Architectures. Wiley, HobokenCrossRefGoogle Scholar
  2. 2.
    Dubois E (2001) A projection method to generate anaglyph stereo images. Proc IEEE Int Conf Acoust Speech Signal Process 3:1661–1664Google Scholar
  3. 3.
    Ebrahimi F, Chamik M, Winkler S (2004) JPEG vs. JPEG 2000: An Objective Comparison of Image Encoding Quality. Proceedings of SPIEGoogle Scholar
  4. 4.
    Gonzalez RC, Woods RE (2008) Digital Image Processing. Third Edition, Ed. Prentice Hall. ISBN: 013168728XGoogle Scholar
  5. 5.
    Hartman NW, Bertoline NW (2005) Spatial Abilities and Virtual Technologies: Examining the Computer Graphics Learning Environment, iv, pp.992–997, Ninth International Conference on Information Visualization (IV'05)Google Scholar
  6. 6.
    ITU-R (2002) ITU-R Recommendations BT-500.11 methodology for the subjective assessment for the Television Pictures. International Telecommunication UnionGoogle Scholar
  7. 7.
    ITU-T (2008) ITU-T Recommendation J.247: Objective perceptual multimedia video quality measurement in the presence of a full reference. International Telecommunication UnionGoogle Scholar
  8. 8.
    Kerr DA (2009) Chrominance Subsampling in Digital Images. Readings in Digital Photography, Issue 2, December 3Google Scholar
  9. 9.
    Konrad J, Halle M (2007) 3-D Displays and Signal Processing—An Answer to 3-D Ills?. IEEE Signal Processing Magazine, Vol. 24, No. 6Google Scholar
  10. 10.
    Mandal MK (2003) Multimedia Signals and Systems. Kluwer Academic Publishers, ISBN 1-4020-7270-8Google Scholar
  11. 11.
    Marziliano P, Dufaux F, Winkler S, Ebrahimi T (2004) Perceptual blur and ringing metrics: application to JPEG2000. Signal Process Image Commun 19:163–172CrossRefGoogle Scholar
  12. 12.
    Matsuura F, Fujisawa N (2008) Anaglyph stereo visualization by the use of a single image and depth information. J Vis Arch 11(1):79–86CrossRefGoogle Scholar
  13. 13.
    Mendiburu, B (2009) 3D Movie Making Stereoscopic Digital Cinema from Script to Screen. ISBN: 978-0-240-81137-6. Ed. Focal Press, ElsevierGoogle Scholar
  14. 14.
    Nayan MY, Edirisinghe EA, Bez HE (2002) Baseline JPEG-Like DWT CODEC for Disparity Compensated Residual Coding of Stereo Images. Proceedings of the 20th Eurographics UK Conference (EGUK.02)Google Scholar
  15. 15.
    Peinsipp-Byma E, Rehfeld N, Ecl R (2009) Evaluation of stereoscopic 3D displays for image analysis tasks. Stereoscopic Displays and Applications XX, Proceedings of SPIE Volume: 7237. ISBN: 9780819474872Google Scholar
  16. 16.
    Smolic A, Mueller K, Merkle P, Kauff P, Wiegand T (2009) An Overview of Available and Emerging 3D Video Formats and Depth Enhanced Stereo as Efficient Generic-Solution. Proceedings of the 27th conference on Picture Coding Symposium. ChicagoGoogle Scholar
  17. 17.
    StereoGraphics Corporation (1997) Stereographics Developers Handbook: Background on Creating Images for CrystalEyes and SimulEyesGoogle Scholar
  18. 18.
    Su Y, Vetro A, Smolic A. (2006) Common Test Conditions for Multiview Video Coding. Joint Video Team (JVT) Doc. JVT-U211, Hangzhou, ChinaGoogle Scholar
  19. 19.
    Thanapirom S, Fernando WAC, Edirisinghe EA (2005) Zerotree-based stereoscopic video CODEC. Opt Eng, 44 (7)Google Scholar
  20. 20.
    Tian D, Pandit P, Yin P, Gomilla C. (2007) Study of MVC coding tools. Joint Video Team (JVT) Doc. JVT-Y044. Shenzhen, ChinaGoogle Scholar
  21. 21.
    Vetro A, Wiegand T, Sullivan G (2011) (2011) Overview of the Stereo and Multiview Video Coding Extensions of the H.264/MPEG-4 AVC Standard. Proc IEEE 99:626–642CrossRefGoogle Scholar
  22. 22.
    Wandell BA (1995) Foundations of vision. Sinauer Associates Inc, SunderlandGoogle Scholar
  23. 23.
    Wiegand T, Sullivan G (2003) Final draft international standard (FDIS) of joint video specification (ITU-T rec. H.264 ISO/IEC 14 496–10 AVC), Joint Video Team (JVT) of ITUT SG16/Q15 (VCEG) and ISO/IEC JTC1/SC29/WG1, Annex C, Pattaya, Thailand, Doc. JVTG050Google Scholar
  24. 24.
    Winkler S (2005) Digital Video Quality: Vision model and metrics. Wiley, EnglandCrossRefGoogle Scholar
  25. 25.
    Winkler S, Sharma A, McNally D (2001) Perceptual video quality and blockiness metrics for multimedia streaming applications, in Proc. International Symposium on Wireless Personal Multimedia Communications. Aalborg, Denmark, pp 547–552Google Scholar
  26. 26.
    Woods AJ, Harris CR (2010) Comparing levels of crosstalk with red/cyan, blue/yellow, and green/magenta anaglyph 3D glasses. In Proceedings of SPIE Stereoscopic Displays and Applications XXI, vol. 7253, pp. 0Q1-0Q12Google Scholar
  27. 27.
    Woods AJ, Rourke T (2004) Ghosting in Anaglyphic Stereoscopic Images, presented at Stereoscopic Displays and Applications XV, published in Stereoscopic Displays and Virtual Reality Systems XI, AJ Woods, Bolas MT., Merritt OJ, Benton SA, Editors, Proceedings of SPIE-IS&T Electronic Imaging, SPIE Vol. 5291, San Jose, CaliforniaGoogle Scholar
  28. 28.
    Woods AJ, Yuen K-L (2006) Compatibility of LCD Monitors with Frame-Sequential Stereoscopic 3D Visualisation. (Invited Paper), in IMID/IDMC’06 Digest, (The 6th International Meeting on Information Display, and The 5th International Display Manufacturing Conference), pg 98–102, Daegu, South KoreaGoogle Scholar
  29. 29.
    Woods AJ, Yuen K-L, Karvinen KS (2007) Characterizing crosstalk in anaglyphic stereoscopic images on LCD monitors and plasma displays. J Soc Inf Disp 15(11):889–898CrossRefGoogle Scholar
  30. 30.
    Yun-Jeong (1996) Improved disparity estimation algorithm with MPEG-2’s scalability for stereoscopic sequences. IEEE Transactions on Consumer Electronics, v. 42, n. 3Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Leonardo A. de Andrade
    • 1
  • Matheus R. U. Zingarelli
    • 2
  • Rodolfo R. Silva
    • 2
  • Rudinei Goularte
    • 2
  1. 1.Depto.de Artes e ComunicaçãoFederal Universityof São CarlosSão CarlosBrazil
  2. 2.Instituto de Ciências Matemáticas e de ComputaçãoUniversityof São PauloSão CarlosBrazil

Personalised recommendations