Multimedia Tools and Applications

, Volume 71, Issue 3, pp 1105–1127 | Cite as

An image steganographic algorithm based on spatial desynchronization

  • Arijit Sur
  • Devadeep Shyam
  • Piyush Goel
  • Jayanta Mukherjee
Article

Abstract

Calibration based attack is one of the most important steganalytic attacks in recent past specifically for JPEG domain steganography. In calibration attack, the attacker generally predicts the cover image statistics from the stego image. Preventing attackers from such prediction is used to resist these attacks. Domain separation (or randomization) is such a technique which is used for hiding the embedding domain from the attacker. It is observed that existing domain randomization techniques cannot provide enough randomization such that they are easily be detected by recent steganalysis techniques. In this paper, we have extended our previous work based on spatial desynchronization using statistical analysis. It is also experimentally shown that proposed algorithm is less detectable against the calibration based blind as well as targeted steganalytic attacks than the existing JPEG domain steganographic schemes.

Keywords

Steganography Steganalysis Calibration attack Domain separation 

References

  1. 1.
    Avcibas I, Memon N, Sankur B (2003) Steganalysis using image quality metrics. IEEE Trans Image Process 12:221–229CrossRefMathSciNetGoogle Scholar
  2. 2.
    Chen B, Wornell GW (2001) Quantization index modulation: a class of provably good methods for digital watermarking and information embedding. IEEE Trans Inf Theory 47(4):1423–1443CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Chen C, Shi YQ, Chen W, Xuan G (2006) Statistical moments based universal steganalysis using JPEG-2D array and 2-D characteristic function. In: Proc. int. conf. on image processing, Atlanta, GA, USA, 8–11 Oct 2006, pp 105–108Google Scholar
  4. 4.
    Divsalar D, Jin H, McEliece RJ (1998) Coding theorems for turbo-like codes. In: Proc. 36 allerton conf. communications, control, computing, pp 201–210Google Scholar
  5. 5.
    Duda RO, Hart PE, Stork DG (2000) Pattern classification. Wiley, New YorkGoogle Scholar
  6. 6.
    Eggers JJ, Bauml R, Girod B (2002) A communications approach to image steganography. In: Proc. SPIE security and watermarking of multimedia contents IV, vol 4675, pp 26–37Google Scholar
  7. 7.
    Farid H, Siwei L (2002) Detecting hidden messages using higher-order statistics and support vector machines. In: Proc. 5th int. workshop on information hiding, Noordwijkerhout, The Netherlands, 7–9 Oct 2002, pp 340–354Google Scholar
  8. 8.
    Fridrich J (2004) Feature-based steganalysis for JPEG images and its implications for future design of steganographic schemes. In: Proc. 6th int. workshop on information hiding, Toronto, Canada, 23–25 May 2004, pp 67–81Google Scholar
  9. 9.
    Fridrich J, Goljan M, Lisonek P, Soukal D (2005) Writing on wet paper. IEEE Trans Signal Process 53:3923–3935 (Special Issue on Media Security)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Fridrich J, Pevny T, Kodovsky J (2007) Statistically undetectable JPEG steganography: dead ends, challenges, and opportunities. In: Proc. ACM multimedia and security workshop, Dallas, TX, 20–21 Sept 2007, pp 3–14Google Scholar
  11. 11.
    Jin H (2001) Analysis and design of turbo-like codes. PhD thesis, California Institute of Technology, Pasadena, California, pp 20–25Google Scholar
  12. 12.
    Johnson RA (2003) Miller & Freund’s probability and statistics for engineers. Prentice Hall of India Pvt. Ltd., New DelhiGoogle Scholar
  13. 13.
    Lee K, Westfeld A (2007) Generalized category attack improving histogram-based attack on JPEG LSB embedding. In: Furon T, Cayre F, Doerr G, Bas P (eds) Information hiding, 9th international workshop. Lecture notes in computer science, vol 4567, Saint Malo, France, 11–13 Jun 2007. Springer, Berlin, pp 378–392Google Scholar
  14. 14.
    Lee K, Westfeld A, Lee S (2006) Category attack for LSB embedding of JPEG images. In: Shi Y-Q, Jeon B, Shi Y, Jeon B (eds) Digital watermarking, 5th international workshop. Lecture notes in computer science, vol 4283, Jeju Island, Korea, 8–10 November 2006. Springer, Berlin, pp 35–48Google Scholar
  15. 15.
    Li B, Huang J, Shi YQ (2009) Steganalysis of YASS. IEEE Trans Inf Forensics Secur 4(3):369–382CrossRefGoogle Scholar
  16. 16.
    Pevny T, Fridrich J (2007) Merging Markov and DCT features for multi-class JPEG steganalysis. In: Proc. SPIE, electronic imaging, security, steganography, and watermarking of multimedia contents IX, San Jose, CA, vol 6505, pp 3–4Google Scholar
  17. 17.
    Provos N (2001) Defending against statistical steganalysis. In: Proc. 10th USENIX security symposium, Washington DC, vol 10, pp 24–24Google Scholar
  18. 18.
    Sallee P (2003) Model-based steganography. In: Proc. 2nd international workshop on digital watermarking, Seoul, Korea, 20 Oct 2003, pp 154–167Google Scholar
  19. 19.
    Sarkar A, Solanki K, Manjunath BS (2008) Further study on YASS: steganography based on randomized embedding to resist blind steganalysis. In: Proc. SPIE - security, steganography, and watermarking of multimedia contents X, San Jose, California, vol 6819, pp 681917–681917-11Google Scholar
  20. 20.
    Solanki K, Jacobsen N, Madhow U, Manjunath BS, Chandrasekaran S (2004) Robust image-adaptive data hiding based on erasure and error correction. IEEE Trans Image Process 13(12):1627–1639CrossRefGoogle Scholar
  21. 21.
    Solanki K, Sullivan K, Madhow U, Manjunath BS, Chandrasekaran S (2005) Statistical restoration for robust and secure steganography. In: Proc. IEEE int. conf. on image processing, vol 2, Genova, Italy, 11–14 Sep 2005, pp 1118–1121Google Scholar
  22. 22.
    Solanki K, Sullivan K, Madhow U, Manjunath BS, Chandrasekaran S (2006) Probably secure steganography: achieving zero K-L divergence using statistical restoration. In: Proc. IEEE int. conf. on image processing, Atlanta, GA, USA, 8–11 Oct 2006, pp 125–128Google Scholar
  23. 23.
    Solanki K, Sarkar A, Manjunath BS (2007) YASS: yet another steganographic scheme that resists blind steganalysis. In: Proc. 9th int. workshop on information hiding, Saint Malo, Brittany, France, 11–13 June 2007, pp 16–31Google Scholar
  24. 24.
    Sur A, Goel P, Mukhopadhyay J (2009) Spatial desynchronization: a possible way to resist calibration attack. In: International conference on multimedia information networking and security (MINES 2009), Wuhan, China, 18–20 Nov 2009, pp 15–19Google Scholar
  25. 25.
    Sur A, Vignesh R, Mukherjee J (2012) Secure steganography using randomized cropping. In: LNCS transactions on data hiding and multimedia security, vol 7110/2012, Springer, pp 82–95Google Scholar
  26. 26.
    Upham D (1993) Steganographic algorithm JSteg. http://zooid.org/~paul/crypto/jsteg
  27. 27.
    Wang J, Li J, Wiederhold G (2001) SIMPLicity: semantics-sensitive integrated matching for picture libraries. IEEE Trans Pattern Anal Mach Intell 23(9):947–963CrossRefGoogle Scholar
  28. 28.
    Westfeld A (2001) High capacity despite better steganalysis (F5 - a steganographic algorithm). In: Proc. 4th int. workshop on information hiding, Pittsburgh, PA, USA, 25–27 Apr 2001, pp 289–302Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Arijit Sur
    • 1
  • Devadeep Shyam
    • 1
  • Piyush Goel
    • 2
  • Jayanta Mukherjee
    • 2
  1. 1.Department of CSEIIT GuwahatiGuwahatiIndia
  2. 2.Department of CSEIIT KharagpurKharagpurIndia

Personalised recommendations