Advertisement

Multimedia Tools and Applications

, Volume 70, Issue 3, pp 1585–1615 | Cite as

A modified medical image registration

  • Mei-sen Pan
  • Jian-jun Jiang
  • Qiu-sheng Rong
  • Fen Zhang
  • Hui-can Zhou
  • Fang-yan Nie
Article

Abstract

Medical image registration is commonly used in clinical diagnosis, treatment, quality assurance, evaluation of curative efficacy and so on. In this paper, the edges of the original reference and floating images are detected by the B-spline gradient operator and then the binarization images are acquired. By computing the binarization image moments, the centroids are obtained. Also, according to the binarization image coordinates, the rotation angles of the reference and floating images are computed respectively, on the foundation of which the initial values for registering the images are produced. When searching the optimal geometric transformation parameters, the modified peak signal-to-noise ratio (MPSNR) is viewed as the similarity metric between the reference and floating images. At the same time, the simplex method is chosen as multi-parameter optimization one. The experimental results show that, this proposed method has a fairly simple implementation, a low computational load, a fast registration and good registration accuracy. It also can effectively avoid trapping in the local optimum and is adapted to both mono-modality and multi-modality image registrations. Also, the improved iterative closest point algorithm based on acquiring the initial values for registration from the least square method (LICP) is introduced. The experiments reveal that the measure acquiring the initial values for registration from image moments and the least square method (LSM) is feasible and resultful strategy.

Keywords

Image moment Improved PSNR Medical image Image registration Least square method 

Notes

Acknowledgement

This paper was partially supported by the Key Discipline-Leader Foundation of Hunan Provincial Institutions of Higher Education, PRC and supported by Outstanding Young Scientific Research Fund of Hunan Provincial Education Department, PRC(No.09B071).

References

  1. 1.
    Bergevin R, Soucy M, Gagnon H et al (1996) Towards a general multi-view registration technique. IEEE Trans Pattern Anal Mach Intell 18(5):540–547CrossRefGoogle Scholar
  2. 2.
    Besl PJ, Mckay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256CrossRefGoogle Scholar
  3. 3.
    Blondel C, Vaillant R, Malandain G et al (2004) 3D tomographic reconstruction of coronary arteries using a precomputed 4D motion field. Phys Med Biol 49(11):2197–2208CrossRefGoogle Scholar
  4. 4.
    Borgefors G (1988) Hierarchical chamfer matching: a parametric edge matching algorithm. IEEE Trans Pattern Anal Mach Intell 10(6):849–865CrossRefGoogle Scholar
  5. 5.
    Brown L (1992) A survey of image registration techniques. ACM Comput Surv 24(4):325–376CrossRefGoogle Scholar
  6. 6.
    Can A, Stewart C (2002) A feature-based, robust, hierarchical algorithm for registration palm of images of the curved human retina. IEEE Trans Pattern Anal Mach Intell 24(3):347–363CrossRefGoogle Scholar
  7. 7.
    Chen Y, Medioni G (1992) Object Modeling by Registration of Multiple Range Images. Imag Vis Comput 10(3):145–155CrossRefGoogle Scholar
  8. 8.
    Fei B, Wheaton A, Lee Z et al (2002) Automatic MR volume registration and its evaluation for the pelvis and prostate. Phys Med Biol 47(5):823–838CrossRefGoogle Scholar
  9. 9.
    Gelfand N, Ikemoto L, Rusinkiewicz S, et al. (2003) Geometrically Stable Sampling for the ICP Algorithm. Proceedings of the 4th International Conference on 3-D Digital Imaging and Modeling. Stanford University, CA, USA, 260–267Google Scholar
  10. 10.
    Hu M (1962) Visual pattern recognition by moment invariants. IRE Trans Inform Theory 8:179–187MATHGoogle Scholar
  11. 11.
    Hyunjin P, Peyton H, Kristy K et al (2004) Adaptive registration using local information measures. Med Image Anal 8(4):465–473CrossRefGoogle Scholar
  12. 12.
    Krucker JF, LeCarpentier GL, Fowlkes JB et al (2002) Rapid elastic image registration for 3-D ultrasound. IEEE Trans Med Imag 21(11):1384–1394CrossRefGoogle Scholar
  13. 13.
    Kybic J, Unser M (2003) Fast parametric elastic image registration. IEEE Trans Image Process 12(11):1427–1442CrossRefGoogle Scholar
  14. 14.
    Lehmann TM, Gonner C, Spitzer K (1999) Survey: Interpolation Methods in Medical Image Processing. IEEE Trans Med Imaging 18(11):1049–1075CrossRefGoogle Scholar
  15. 15.
    Lu ZT, Feng YQ, Feng QJ et al (2008) Medical Image Registration Based on Principal Phase Congruency. Acta Electronica Sinica 36(10):1974–1978Google Scholar
  16. 16.
    Maes F, Collignon A, Vandermeulen D et al (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imag 16(2):187–198CrossRefGoogle Scholar
  17. 17.
    Maintz JBA, Viergever MA (1998) A survey of medical image registration. Med Image Anal 2(1):1–36CrossRefGoogle Scholar
  18. 18.
    Pan MS, Tang JT, Yang XL (2011) Medical Image Registration Based on SVD and Modified PSNR. J Inf Sci Eng 27(5):1761–1775MATHMathSciNetGoogle Scholar
  19. 19.
    Park SY, Subbarao M (2004) Automatic 3D model reconstruction based on novel pose estimation and integration techniques. Imag Vis Comput 22(8):623–635CrossRefGoogle Scholar
  20. 20.
    Paul V, William M, Wells I (1997) Alignment by Maximization of Mutual Information. Int J Comput Vis 24(2):137–154CrossRefGoogle Scholar
  21. 21.
    Pluim JPW, Maintz JBA, Viergever MA (2003) Mutual-information-based registration of medical Images: A Survey. IEEE Trans Med Imaging 22(8):986–1004CrossRefGoogle Scholar
  22. 22.
    Radau PE, Slomka PJ, Julin P et al (2001) Evaluation of linear registration algorithm for brain SPECT and the errors due to hypoperfusion lesions. Med Phys 28(8):1660–1668CrossRefGoogle Scholar
  23. 23.
    Rueckert D, Sonoda L, Hayes C et al (1999) Nonrigid registration using free-form deformations:application to breast MR images. IEEE Trans Med Imag 18(8):712–721CrossRefGoogle Scholar
  24. 24.
    Rusinkiewicz S, Levoy M (2001) Efficient variants of the ICP algorithm. Proceedings of the 3rd International Conference on 3-D Digital Imaging and Modeling, Quebec, 145–152Google Scholar
  25. 25.
    Saber E, Tekalp AM (1997) Region-Based Shape Matching for Automatic Image Annotation and Query-by-Example. J Vis Comm Image Represent 8(1):3–20CrossRefGoogle Scholar
  26. 26.
    Slomka PJ, Mandel J, Downey D et al (2001) Evaluation of voxel-based registration of 3-D power doppler ultrasound and 3-D magnetic resonance angiographic images of carotid arteries. Ultrasound Med Biol 27(7):945–955CrossRefGoogle Scholar
  27. 27.
    Stammberger T, Eckstein F, Michaelis M et al (1999) Interobserver reproducibility of quantitative cartilage measurements: comparison of B-spline snakes and manual segmentation. Magn Reson Imag 17(7):1033–1042CrossRefGoogle Scholar
  28. 28.
    Staring M, Klein S, Pluim JPW (2007) Nonrigid registration with tissue-dependent filtering of the deformation field. Phys Med Biol 52(23):6879–6892CrossRefGoogle Scholar
  29. 29.
    Szeliski R, Coughlan J (1997) Spline-based image registration. Int J Comput Vis 22(3):199–218CrossRefGoogle Scholar
  30. 30.
    Thevenaz P, Unser M (2000) Optimization of mutual information for multiresolution image registration. IEEE Trans Image Process 9(12):2083–2099CrossRefMATHGoogle Scholar
  31. 31.
    Unser M (1999) Spline: A perfect fit for signal and image processing. IEEE Signal Process 16(8):22–38CrossRefGoogle Scholar
  32. 32.
    Unser M, Aldroubi A, Eden M (1993) B-spline Signal Processing: Part-I Theory. IEEE Trans Signal Process 41(2):821–833CrossRefMATHGoogle Scholar
  33. 33.
    Unser M, Aldroubi A, REden M (1993) B-spline Signal Processing: Part-II Theory. IEEE Trans Signal Process 41(2):834–848CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Mei-sen Pan
    • 1
  • Jian-jun Jiang
    • 2
  • Qiu-sheng Rong
    • 1
  • Fen Zhang
    • 1
  • Hui-can Zhou
    • 1
  • Fang-yan Nie
    • 1
  1. 1.College of Computer Science and TechnologyHunan University of Arts and ScienceChangdePeople’s Republic of China
  2. 2.Library of Hunan University of Arts and ScienceChangdePeople’s Republic of China

Personalised recommendations