Skip to main content
Log in

SOM and fuzzy based color image segmentation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Spatial information enhances the quality of clustering which is not utilized in the conventional FCM. Normally fuzzy c-mean (FCM) algorithm is not used for color image segmentation and also it is not robust against noise. In this paper, we presented a modified version of fuzzy c-means (FCM) algorithm that incorporates spatial information into the membership function for clustering of color images A progressive technique based on SOM is used to automatically find the number of optimal clusters. The results show that our technique outperforms state-of-the art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Beucher S, Meyer F (1993) The morphological approach to segmentation: the watershed transformation. Math Morphol Image Process 34:433–481

    Google Scholar 

  2. Boykov Y, Jolly M (2001) Interactive graph cuts for optimal boundary region segmentation of objects in N-D images. IEEE Int Conf Comput Vis 1:105–112

    Google Scholar 

  3. Carson C, Belongie S, Greenspan H, Malik J (2002) Blobworld: image segmentation using expectation maximization and its application to image querying. IEEE Trans Pattern Anal Mach Intell 24(8):1026–1038

    Article  Google Scholar 

  4. Chong RM, Tanaka T (2010) Motion blur identification using maxima locations for blind colour image restoration. JoC 1(1):49–56

    Google Scholar 

  5. Comaniciu D, Meer P (1999) “Mean shift analysis and applications.” in Proc. IEEE Int. Conf. Computer Vision, vol. 2, pp. 1197–1203

  6. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619

    Article  Google Scholar 

  7. Duda R, Hart P, Stork D (2001) Pattern classification, 2nd edn. Wiley, Hoboken

    MATH  Google Scholar 

  8. Edge Detection and Image Segmentation (EDISON) System robust image understanding laboratory at Rutgers University [Online]. Available: http://www.caip.rutgers.edu/riul/research/code/EDISON/doc/segm.html

  9. Felzenszwalb P, Huttenlocher D (2004) Efficient graph-based image segmentation. Int J Comput Vis 59(2):167–181

    Article  Google Scholar 

  10. Ilea DE, Whelan PF (2008) CTex—an adaptive unsupervised segmentation algorithm based on colour-texture coherence. IEEE Trans Image Process 17(10):1926–1939

    Article  MathSciNet  Google Scholar 

  11. Kohonen T (2001) Self-Organising maps, Springer series in information sciences, vol. 30, 3rd edn. Springer Verlang, Berlin Heidelberg, New York

    Google Scholar 

  12. Kolmogorov V, Zabih R (2004) What energy functions can be minimized via graph cuts? IEEE Trans Pattern Anal Mach Intell 26(2):147–159

    Article  Google Scholar 

  13. Li Y, Sun J, Tang CK, Shum HY (2004) Lazy snapping. ACM Trans Graph 23(3):303–308

    Article  Google Scholar 

  14. Loo PK, Tan CL (2004) Adaptive region growing color segmentation for text using irregular pyramid. Int Workshop Doc Anal Syst 3163:264–275

    Google Scholar 

  15. Lucchese L, Mitra SK (2001) Color image segmentation: a state of the art survey. Proc Indian Natl Sci Acad Image Process Vis Pattern Recogn 67(2):207–221

    Google Scholar 

  16. Martin D, Fowlkes C, Tal D, Malik J (2001) “A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics.” in Proc. IEEE Int. Conf. Computer Vision, vol.2, pp. 416–423, Jul

  17. Mortensen E, Barrett W (1998) Interactive segmentation with intelligent scissors. Graph Model Image Process 60(5):349–384

    Article  MATH  Google Scholar 

  18. Mukhopadhyay A, Maulik U, Bandyopadhyay S (2009) “multiobjective genetic algorithm-based fuzzy clustering of categorical attributes.” IEEE Trans Evol Comput 13(5), October

  19. Ponomarchuk Y, Seo D-W (2010) Intrusion detection based on traffic analysis and fuzzy inference system in wireless sensor networks. JoC 1(1):35–42

    Google Scholar 

  20. Rother C, Kolmogorov V, Blake A (2004) Grabcut interactive foreground extraction using iterated graphcuts. ACM Trans Graph 23(3):309–314

    Article  Google Scholar 

  21. Sathappan OL, Chitra P, Venkatesh P, Prabhu M (2010) Modified genetic algorithm for multiobjective task scheduling on heterogeneous computing system. IJITCC 1(2):146–158

    Article  Google Scholar 

  22. Shiand J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905

    Article  Google Scholar 

  23. Tan KS, MatIsa NA (2011) Color image segmentation using histogram thresholding Fuzzy C-means hybrid approach. Elsevier Pattern Recogn 44:1–15

    Article  MATH  Google Scholar 

  24. Tsekouras GE, Papageorgiou D, Kotsiantis S, Kalloniatis C, Pintelas P (2004) Fuzzy clustering of categorical attributes and its use in analyzing cultural data. Int J Comput Intell 1(2):147–151

    Google Scholar 

  25. Tu Z (2005) “An integrated frame work for image segmentation and perceptual grouping.” in Proc. Int. Conf. Computer Vision, pp. 670–677

  26. Vincent L, Soille P (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell 13(6):583–598

    Article  Google Scholar 

  27. Yang AY, Wright J, Sastry SS, Ma Y. Unsupervised segmentation of natural images via lossy data compression EECS Dept., Univ. California, Berkeley, 2006, Tech. Rep. UCB/EECS-2006–195

  28. Ye Y, Li X, Wu B, Li Y (2010) A comparative study of feature weighting methods for document co-clustering. IJITCC 1(2):206–220

    Article  Google Scholar 

Download references

Acknowledgement

This work (2011-0015740) was supported by Mid-career Researcher Program through NRF grant funded by the MEST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Arfan Jaffar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, A., Jaffar, M.A. & Choi, TS. SOM and fuzzy based color image segmentation. Multimed Tools Appl 64, 331–344 (2013). https://doi.org/10.1007/s11042-012-1003-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-012-1003-6

Keyword

Navigation