Advertisement

Multimedia Tools and Applications

, Volume 62, Issue 3, pp 785–820 | Cite as

Recommendations in a heterogeneous service environment

  • Christian ÜberallEmail author
  • Christopher Köhnen
  • Veselin Rakocevic
  • Rudolf Jäger
  • Erich Hoy
  • Muttukrishnan Rajarajan
Article

Abstract

This paper presents novel algorithms which are able to generate recommendations within a heterogeneous service environment. In this work explicitly set preferences as well as implicitly logged viewing behavior are employed to generate recommendations for Digital Video Broadcast (DVB) content. This paper also discusses the similarity between the DVB genres and YouTube categories. In addition it presents results to show the comparison between well known collaborative filtering methods. The outcome of this comparison study is used to identify the most suitable filtering method to use in the proposed environment. Finally the paper presents a novel Personal Program Guide (PPG), which is used as a tool to visualize the generated recommendations within a heterogeneous service environment. This PPG is also capable of showing the linear DVB content and the non-linear YouTube videos in a single view.

Keywords

Personalized television Recommendations Content-based Collaborative filtering Similarity Media convergence Personal Program Guide DVB YouTube 

References

  1. 1.
    Blanco Y, Pazos J, Gil A, Ramos M, López M, Barragáns B (2005) AVATAR: Modeling users by dynamic ontologies in a tv recommender system based on sematic reasoning. In: Proceedings of the 3rd European Conference on Interavtive TVGoogle Scholar
  2. 2.
    Campell I, Rijsbergen K van (1996) The Ostensive Model of developing information needs. In: Proceedings of: CoLISGoogle Scholar
  3. 3.
    Hopfgartner F, Jose JM (2010) Semantic user profiling techniques for personlized multimedia recommendation. Multimedia Syst 16:255–274CrossRefGoogle Scholar
  4. 4.
    Hopfgartner F, Hannah D, Gildea N, Jose JM (2008) Capturing multiple interests in news video retrieval by incorporating the ostensive model. In: 2nd International Workshop on Personalized Access, Profile Management, and Context Awareness: DatabasesGoogle Scholar
  5. 5.
    Elsweiler D, Jones GJF, Kelly L, Teevan J (2010) Desktop search. In; Workshop of the 33rd Annual International, ACM SIGIR Conference on Research and Developmentin Information RetrievalGoogle Scholar
  6. 6.
    Herlocker JL, Konstan JA, Terveen LG, Riedl JT (1998) Evaluating collaborative filtering recommender systems. In: Third ACM Conference on Digital Libraries in PittsburghGoogle Scholar
  7. 7.
    Deshpane M, Karypis G (2004) Item-based Top-N recommendation algorithms. ACM Trans Inf Sys 22:143–177CrossRefGoogle Scholar
  8. 8.
    Sarwar B, Karypis G, Konstan J, Riedl John (2001) Item-based collaborative filtering recommendation algorithms, ACMGoogle Scholar
  9. 9.
    Überall C, Rajarajan M, Rakocevic V, Jäger R, Köhnen C (2009) Recommendation index for DVB content using service information. In: Proceeding of the ICME, IEEEGoogle Scholar
  10. 10.
    Hsu SH, Wen M-H, Lin H-C, Lee C-C, Lee C-H (2007) AIMED - A personalized TV recommendation system. In: Interactive TV: A Shared Experience, Springer, pp 166–174Google Scholar
  11. 11.
    Herlocker JL, Konstan JA, Terveen LG, Riedl JT (2004) Evaluating collaborative filtering recommender systems. ACM Trans Inf Sys 22:5–53CrossRefGoogle Scholar
  12. 12.
    Dai W, Cohen R (2003) Dynamic personalized TV recommendation system. In: Proceedings of the UM 2003 Workshop on Personalization in Future TVGoogle Scholar
  13. 13.
    Zhang H (2005) Personalized TV program recommendation based on TV-anytime metadata. In: Proceeding of the Ninth International Symposium on, IEEEGoogle Scholar
  14. 14.
    European Standard (2000) (Telecommunications series, Digital Video Broadcasting (DVB) - Specification for service information (SI) in DVB systems, Version: V1.4.1Google Scholar
  15. 15.
    Balabanovic M, Shoham Y (1997) Content-based collaborative recommender. Third ACM Conference on Digital Libraries in Pittsburgh 40:66–72Google Scholar
  16. 16.
    Blanco-Fernandez Y, Pazos-Arias JJ, Gil-Solla A, Ramos-Cabrer M, Lopez-Nores M (2008) A hybrid strategy to personalize the digital television by semantic inference. Interactive TV: A Shared ExperienceGoogle Scholar
  17. 17.
    Papagelis M, Plexousakis D (2005) Qualitative analyis of user-based and item-based prediction algorithms for recommendation agents. Eng Appl Artif Intell 18:781–789CrossRefGoogle Scholar
  18. 18.
    Su J-H, Wang B-W, Hsiao C-Y, Tseng VS (2010) Personalized rough-set-based recommendation by integrating multiple contents and collaborative information. Inf Sci 180:113–131CrossRefGoogle Scholar
  19. 19.
    Su X, Koshgoftaar TM (2009) A survey of collaborative filtering techniuqes. Hindawi Publishing CorporationGoogle Scholar
  20. 20.
    Papula L (2003) Mathematische formelsammlung, viewegGoogle Scholar
  21. 21.
    Ardissono L, Gena C, Torasso P, Bellifemine F, Chiarotto A, Difino A, Negro B (2003) Personalized recommendation of TV programs. In: Proceedings of the 8th AI*IA ConferenceGoogle Scholar
  22. 22.
    Toon De Pessemier and Luc Martens (2008) A profile based recommendation system for TV-Anytime annotated content. In: 8th FirW PhD SymposiumGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Christian Überall
    • 1
    • 2
    Email author
  • Christopher Köhnen
    • 1
    • 2
  • Veselin Rakocevic
    • 1
  • Rudolf Jäger
    • 2
  • Erich Hoy
    • 2
  • Muttukrishnan Rajarajan
    • 1
  1. 1.City University LondonLondonUnited Kingdom
  2. 2.University of Applied Sciences - Technische Hochschule MittelhessenFriedbergGermany

Personalised recommendations