Multimedia Tools and Applications

, Volume 61, Issue 2, pp 299–319 | Cite as

High-capacity reversible data hiding based on multi-histogram modification

  • Cheng-Tzu Wang
  • Hsiang-Fu YuEmail author


Reversible data hiding is a technique that embeds a message into a host image with acceptable visual distortion and then recovers the image without any data loss while extracting the embedded message. The previous schemes mainly suffer from an unresolved problem that the imperceptibility of a marked image decreases severely as the embedding capacity increases. Extending the histogram modification technique, this study proposes a novel scheme that utilizes multiple histograms to increase embedding capacity while keeping marked-image quality. Unlike most histogram modification schemes, the multi-histogram scheme does not suffer from overflow and underflow during histogram shift. This scheme can yield the embedding capacity of 1 bit per pixel (bpp) at the PSNR of 48.13 db for a 512 × 512 grayscale image. To reduce the overhead during message embedding, the work further proposes an iterative multi-histogram scheme. Comprehensive experimental results show that both the schemes can achieve high embedding capacity and image quality.


Reversible data hiding Watermarking Lossless 


  1. 1.
    Alattar AM (2004) Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans Image Process 13(8):1147–1156MathSciNetCrossRefGoogle Scholar
  2. 2.
    Celik MU, Sharma G, Tekalp AM, Saber E (2005) Lossless generalized-LSB data embedding. IEEE Trans Image Process 4(2):253–266CrossRefGoogle Scholar
  3. 3.
    Chang C-C, Tai W-L, Lin C-C (2006) A reversible data hiding scheme based on side match vector quantization. IEEE Trans Circuits Syst Video Technol 16(10):1301–1308CrossRefGoogle Scholar
  4. 4.
    Fallahpour M, Sedaaghi MH (2007) High capacity lossless data hiding based on histogram modification. IEICE Electron Expr 4(7):205–210CrossRefGoogle Scholar
  5. 5.
    Fridrich J, Goljan M, Du R (2001) Distortion-free data embedding. in Proceedings of the 4th Information Hiding Workshop, Lecture Notes in Computer Science, vol. 2137, pp. 27–41, New YorkGoogle Scholar
  6. 6.
    Fridrich J, Goljan M, Du R (2002) Lossless data embedding––new paradigm in digital watermarking. EURASIP J Appl Sig P 2:185–196CrossRefGoogle Scholar
  7. 7.
    Horowitz E, Sahni S, Mehta DP (2007) Fundamentals of data structures in C++, 2ed, Silicon PressGoogle Scholar
  8. 8.
  9. 9.
    Hu Y, Lee H-K, Chen K, Li J (2008) Difference expansion based reversible data hiding using two embedding directions. IEEE Trans Multimedia 10(8):1500–1512CrossRefGoogle Scholar
  10. 10.
    Hu Y, Lee H-K, Li J (2009) DE-based reversible data hiding with improved overflow location map. IEEE Trans Circuits Syst Video Technol 19(2):250–260CrossRefGoogle Scholar
  11. 11.
    Lee S, Yoo CD, Kalker T (2007) Reversible image watermarking based on integer-to-integer wavelet transform. IEEE Trans Inf Forensics Security 2(3):321–330CrossRefGoogle Scholar
  12. 12.
    Lin C-C, Hsueh N-L (2008) A lossless data hiding scheme based on three-pixel block differences. Pattern Recogn 41:1415–1425zbMATHCrossRefGoogle Scholar
  13. 13.
    Lin C-C, Tai W-L, Chang C-C (2008) Multilevel reversible data hiding based on histogram modification of difference images. Pattern Recogn 41:3582–3591zbMATHCrossRefGoogle Scholar
  14. 14.
    Ni Z, Shi YQ, Ansari N, Su W (2006) Reversible data hiding. IEEE Trans Circuits Syst Video Technol 16(3):354–362CrossRefGoogle Scholar
  15. 15.
    Niels P, Honeyman P (2003) Hide and Seek: An Introduction to Steganography. IEEE Security and Privacy 1(3):32–44Google Scholar
  16. 16.
    Tai W-L, Yeh C-M, Chang C-C (2009) Reversible Data Hiding Based on Histogram Modification of Pixel Differences. IEEE Trans Circuits Syst Video Technol 19(6):906–910CrossRefGoogle Scholar
  17. 17.
    Thodi DM, Rodriguez JJ (2007) Expansion embedding techniques for reversible watermarking. IEEE Trans Image Process 16(3):721–730MathSciNetCrossRefGoogle Scholar
  18. 18.
    Tian J (2003) Reversible watermarking using a difference expansion. IEEE Trans Circuits Syst Video Technol 13(8):890–896CrossRefGoogle Scholar
  19. 19.
    Tsai P (2009) Histogram-based reversible data hiding for vector quantisation-compressed images. IET Image Process 3(2):100–114MathSciNetCrossRefGoogle Scholar
  20. 20.
    Tsai P, Hu Y-C, Yeh H-L (2009) Reversible image hiding scheme using predictive coding and histogram shifting. Signal Processing 89:1129–1143zbMATHCrossRefGoogle Scholar
  21. 21.
    USC-SIPI image database/miscellaneous,
  22. 22.
    Wang Z-H, Chang C-C, Chen K-N, Li M-C (2010) An encoding method for both image compression and data lossless information hiding. J Syst Software 83(11):2073–2082CrossRefGoogle Scholar
  23. 23.
    Wang XT, Shao CY, Xu XG, Niu XM (2007) Reversible data-hiding scheme for 2-D vector maps based on difference expansion. IEEE Trans Inf Forensics Security 2(3):311–320CrossRefGoogle Scholar
  24. 24.
    Weng S, Zhao Y, Pan J-S, Ni R (2008) Reversible watermarking based on invariability and adjustment on pixel pairs. IEEE Signal Process Lett 15:721–724CrossRefGoogle Scholar
  25. 25.
    Wu M, Lin B (2003) Data hiding in image and video: part I – fundamental issues and solutions. IEEE Trans Image Process 12(6):685–695CrossRefGoogle Scholar
  26. 26.
    Wu M, Yu H, Liu B (2003) Data hiding in image and video: part II – designs and applications. IEEE Trans Image Process 12(6):696–705CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Computer ScienceNational Taipei University of EducationTaipeiTaiwan

Personalised recommendations