Advertisement

Multimedia Tools and Applications

, Volume 61, Issue 2, pp 281–298 | Cite as

Chaos based cryptosystem for still visual data

  • Nidhi TanejaEmail author
  • Balasubramanian Raman
  • Indra Gupta
Article

Abstract

Recent years have witnessed a strong relationship between chaos and cryptography. Owing to this relationship, development in one field directly impacts the other field. High computational resources are consumed in re-designing of the complete cryptosystem due to a newly developed chaotic map. Also, the tools developed to discern chaos leads to easy cryptanalysis of chaotic cryptosystems. To save resources and overcome easy cryptanalysis, this paper proposes a spatial domain based chaotic cryptosystem that employs different chaotic maps during permutation-substitution process. Multiple iterations have been performed to achieve resistance against various cryptanalytic and error function attacks, that are specifically designed for chaos based cryptosystems. The proposed technique has been generalized and verified for different chaotic maps. A significant benefit of the proposed cryptosystem is its support for chaotic system free property, which allows replacement of an existing chaotic map with a different map at a later stage. Thorough performance, security and comparative analysis ascertains efficacy of the proposed technique.

Keywords

Arnold cat map Chaotic system free property Error function attack 

References

  1. 1.
    Álvarez G, Li S (2009) Cryptanalyzing a nonlinear chaotic algorithm (NCA) for image encryption. Commun Nonlinear Sci Numer Simul 14:3743–3749CrossRefGoogle Scholar
  2. 2.
    Álvarez G, Montoya F, Romeraa M, Pastor G (2000) Cryptanalysis of a chaotic encryption system. Phys Lett A 276:191–196MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Álvarez G, Montoya F, Romera M, Pastor G (2003) Cryptanalysis of a discrete chaotic cryptosystem using external key. Phys Lett A 319:334–339MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Behnia S, Akhsani A, Ahadpour S, Mahmodi H, Akhavan A (2007) A fast chaotic encryption scheme based on piecewise nonlinear chaotic maps. Phys Lett A 366(4–5):391–396CrossRefGoogle Scholar
  5. 5.
    Bose R, Pathak S (2006) A novel compression and encryption scheme using variable model arithmetic coding and coupled chaotic system. IEEE Trans Circuits Syst I 53(4):848–857MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chang W-D (2009) Digital secure communication via chaotic systems. Digit Signal Process 19(4):693–699CrossRefGoogle Scholar
  7. 7.
    Chen G, Mao YB, Chui CK (2004) A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Solitons Fractals 12:749–761MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dachselt F, Schwarz W (2001) Chaos and cryptography. IEEE Trans Circuits Syst I, Fundam Theory Appl 48(12):1498–1508MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Dachselt F, Kelber K, Schwarz W, Vundewalle J (1998) Chaotic versus classical stream ciphers—a comparative study, vol IV. In: Proc. int. symp. circuits syst., Monterey, CA, USA, pp 518–521Google Scholar
  10. 10.
    El-Bakary EM, Zahran O, El-Dolil SA, Abd El-Samie FE (2009) Chaotic maps: a tool to enhance the performance of OFDM systems. Int J Commun Netw Inf Secur 1(2):54–58Google Scholar
  11. 11.
    Guan Z-H, Huang F, Guan W (2005) Chaos-based image encryption algorithm. Phys Lett A 346:153–157zbMATHCrossRefGoogle Scholar
  12. 12.
    Hénon M (1976) A two-dimensional mapping with a strange attractor. Commun Math Phys 50(1):69–77zbMATHCrossRefGoogle Scholar
  13. 13.
    Johnson M, Ishwar P, Prabhakaran V, Schonberg D, Ramchandran K (2004) On compressing encrypted data. IEEE Trans Signal Process 52(10, Part 2):2992–3006MathSciNetCrossRefGoogle Scholar
  14. 14.
    Li S, Mou X, Cai Y (2001) Improving security of chaotic encryption approach. Phys Lett A 290:127–133MathSciNetCrossRefGoogle Scholar
  15. 15.
    Li S, Zheng X (2002) Cryptanalysis of a chaotic image encryption method. In: Proc. IEEE international symp. circuits syst., Arizona, vol 2, pp 708–711Google Scholar
  16. 16.
    Li S, Li C, Lo K-T, Chen G (2006) Cryptanalysis of an image encryption scheme. J Electron Imaging 15(4), article number 043012Google Scholar
  17. 17.
    Li S, Li C, Chen G, Bourbakis NG, Lo K-T (2008) A general quantitative cryptanalysis of permutation-only multimedia ciphers against plaintext attacks. Signal Process, Image Commun 23(3):212–223CrossRefGoogle Scholar
  18. 18.
    Marion A (1991) An introduction to image processing. Chapman and Hall, LondonGoogle Scholar
  19. 19.
    Norcen R, Podesser M, Pommer A, Schmidt H-P, Uhl A (2003) Confidential storage and transmission of medical image data. Comput Biol Med 33(7):277–292CrossRefGoogle Scholar
  20. 20.
    Peterson G (1997) Arnold’s cat map. Available from http://online.redwoods.cc.ca.us/instruct/darnold/maw/catmap3.htm
  21. 21.
    Pommer A, Uhl A (2002) Application scenarios for selective encryption of visual data. In: Dittmann J, Fridrich J, Wohlmacher P (eds) Multimedia and security wkshp., ACM Multimedia, pp 71–74Google Scholar
  22. 22.
    Schonberg D, Draper SC, Yeo C, Ramchandran K (2008) Toward compression of encrypted images and video sequences. IEEE Trans Inf Forensics Secur 3(4):749–762CrossRefGoogle Scholar
  23. 23.
    Sun F, Liu S, Li Z Lu Z (2008) A novel image encryption scheme based on spatial chaos map. Chaos Solitons Fractals 38:631–640MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Uhl A, Pommer A (2005) Application scenarios for the encryption of visual data. In: Image and video encryption from digital rights management to secured personal communication, vol 15. Advances in inform. security. Springer, Berlin, pp 31–43Google Scholar
  25. 25.
    Wang X, Zhan M, Lai C-H, Gang H (2004) Error function attack of chaos synchronization based encryption schemes. Chaos (American Institute of Phyics) 14(1):128–137Google Scholar
  26. 26.
    Wong K-W, Sin-Hung Kwok B, Law W-S (2008) A fast image encryption scheme based on chaotic standard map. Phys Lett A 372(15):2645–2652zbMATHCrossRefGoogle Scholar
  27. 27.
    Xing-Yuan W, Qing Y (2009) A block encryption algorithm based on dynamic sequences of multiple chaotic systems. Commun Nonlinear Sci Numer Simul 14(2):574–581MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Yang H, Liao X, Wong K-w, Zhang W, Wei P (2009) A new cryptosystem based on chaotic map and operations algebraic. Chaos Solitons Fractals 40(5):2520–2531MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Nidhi Taneja
    • 1
    Email author
  • Balasubramanian Raman
    • 2
  • Indra Gupta
    • 1
  1. 1.Department of Electrical EngineeringIndian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.Department of MathematicsIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations