Skip to main content
Log in

Extracting discriminative features for CBIR

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Developing low-dimensional discriminative features is crucial for content-based image retrieval (CBIR). In this paper, we present a square symmetrical local binary pattern (SSLBP) texture descriptor, which is a compact symmetrical-invariant variation of local binary pattern (LBP), then we propose a merging 2-class linear discriminant analysis (M2CLDA) method to capture low-dimensional optimal discriminative features in the projection space. M2CLDA calculates discriminant vectors with respect to each class in the one-vs.-all classification scenario and then merges all the discriminant vectors to form a projection matrix. The dimensionality of the M2CLDA space fits in with the number of classes involved. Our experiments show that the SSLBP feature is an effective variation of LBP, and the M2CLDA approach improves the performance of image retrieval and image classification observably as compared with the existed LDA approaches and takes less computation complexity than the kernel discriminant analysis (KDA) methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahonen T, Hadid A, Pietikäinen M (2006) Face description with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041

    Article  Google Scholar 

  2. Belhumeur N, Hespanha J, Kriegman D (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  3. Boujemaa N, Nastar C (1999) Content-based image retrieval at the IMEDIA group of the INRIA 10th DELOS Workshop Audio-Visual Digital Libraries Santorini, Greece, June

  4. Brodatz P (1966) Textures: a photographic album for artists and designers. Dover Publications, New York

    Google Scholar 

  5. Ekenel HK, Stiefelhagen R (2007) IEEE 15th signal processing and communications applications. Anadolu University, Eskişehir, pp 1–4

    Book  Google Scholar 

  6. Fisher RA (1938) The statistical utilization of multiple measurements. Ann Eugenics 8:376–386

    Article  Google Scholar 

  7. Flickner M, Sawhney H, Niblack W et al (1995) Query by image and video content: the QBIC system. IEEE Comput 28(9):23–32

    Article  Google Scholar 

  8. Fukunaga K (1990) Introduction to statistical pattern recognition. Academic, New York

    MATH  Google Scholar 

  9. Gao D, Vasconcelos N (2004) Discriminant saliency for visual recognition from cluttered scenes. In Proceedings of Neural Information Processing Systems (NIPS), Vancouver, Canada. pages 481–488, 2004

  10. Guo ZH, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19(6):1657–1663

    Article  MathSciNet  Google Scholar 

  11. Heikkilä M, Pietikäinen M (2006) A texture-based method for modeling the background and detecting moving objects. IEEE Trans Pattern Anal Mach Intell 28(4):657–662

    Article  Google Scholar 

  12. Heikkilä M, Pietikäinen M, Schmid C (2009) Description of interest regions with local binary patterns. Pattern Recogn 42(3):425–436

    Article  MATH  Google Scholar 

  13. Jing F, Li M, Zhang H-J, Zhang B (2005) A unified framework for image retrieval using keyword and visual features. IEEE Trans Image Process 14(7):979–989

    Article  Google Scholar 

  14. Lew MS, Sebe N, Djeraba C, Jain R (2006) Content-based multimedia information retrieval: state of the art and challenges. ACM Trans Multimed Comput Comm Appl 2(1):1–19

    Article  Google Scholar 

  15. Li Z, Shi Z, Liu X, Li Z, Shi Z (2010) Fusing semantic aspects for image annotation and retrieval. J Vis Comm Image Represent 21:798–805

    Article  Google Scholar 

  16. Li J, Wang JZ (2003) Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Trans Pattern Anal Mach Intell 25(9):1075–1088

    Article  Google Scholar 

  17. Liao S, Law MWK, Chung ACS (2009) Dominant local binary patterns for texture classification. IEEE Trans Image Process 18(5):1107–1118

    Article  Google Scholar 

  18. Lu J, Plataniotis KN, Venetsanopoulos AN (2003) Face recognition using LDA-based algorithms. IEEE Trans Neural Network 14(1):195–200

    Article  Google Scholar 

  19. Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on feature distributions. Pattern Recogn 29:51–59

    Article  Google Scholar 

  20. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  21. Pietikäinen M, Nurmela T, Mäenpää T, Turtinen M (2004) View-based recognition of real-world textures. Pattern Recogn 37(2):313–323

    Article  MATH  Google Scholar 

  22. Rui Y, Huang TS (2000) Optimizing learning in image retrieval. Proc. of IEEE Int. Conf. On Computer Vision and Pattern Recognition, Hilton Head, SC, 236–243

  23. Shi ZP, Hu H, Li QY, Shi ZZ, Duan CL (2005) Texture spectrum descriptor based image retrieval. J Software 16(6):1039–1045, in Chinese

    Article  MATH  Google Scholar 

  24. Smith JR, Chang SF (1997) Visually searching the web for content. IEEE Multimed 4(3):12–20

    Article  Google Scholar 

  25. Tucker A (1995) Applied combinatorics, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  26. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86

    Article  Google Scholar 

  27. Xi Liu, Zhiping Shi, Zhixin Li, Xishun Wang, Zhongzhi Shi (2010) Sorted label classifier chains for learning images with multi-label. ACM MM’10, October 25–29, Firenze, Italy

  28. Yang J, Frangi AF, Yang J-Y, Zhang D, Jin Z (2005) Complete kernel fisher discriminant framework for feature extraction and recognition. IEEE Trans Pattern Anal Mach Intell 27(2):230–243

    Article  Google Scholar 

  29. You D, Hamsici OC, Martinez AM (2010) Kernel optimization in discriminant analysis. IEEE Trans Pattern Anal Mach Intell, 01 Sept. 2010. http://doi.ieeecomputersociety.org/10.1109/TPAMI.2010.173

  30. Yu H, Yang J (2001) A direct LDA algorithm for high-dimensional data—with application to face recognition. Pattern Recogn 34(10):2067–2070

    Article  MATH  Google Scholar 

  31. Zhao G, Pietikäinen M (2007) Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans Pattern Anal Mach Intell 29(6):915–928

    Article  Google Scholar 

  32. Zhiping Shi, Fei Ye, Qing He, Zhongzhi Shi (2008) Symmetrical invariant LBP Texture descriptor and application for image retrieval. IEEE Congress on Image and Signal Processing. Sanya, China. pages 825–829. May 27–30

  33. Zhiping Shi, Qing He, Zhongzhi Shi. (2009) An index and retrieval framework integrating perceptive features and semantics for multimedia databases. Multimedia Tools and Applications, Springer Heidelberg, 42(2):207–231

  34. Zhiping Shi, Xi Liu, Qing He, Zhongzhi Shi (2009) Image features optimizing for content-based image retrieval. 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems. Pages 260–264

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiping Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Z., Liu, X., Li, Q. et al. Extracting discriminative features for CBIR. Multimed Tools Appl 61, 263–279 (2012). https://doi.org/10.1007/s11042-011-0836-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-011-0836-8

Keywords

Navigation