Skip to main content
Log in

Example-based procedural modelling by geometric constraint solving

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

A novel method for procedurally modelling large, complex three–dimensional scenes is presented. Our approach is general-purpose and takes as input any three–dimensional model intuitively provided by a user. The algorithm exploits the adjacency between shapes and objects in the input model and computes an output model that extracts these features (constraints and adjacencies) and models the input. There are two important differences between our method and existing general-purpose model synthesis algorithms. The first is the use of a distribution for the surface or terrain on which the new model is placed. The second difference is that we automatically generate example-inherent constraints to assist the adjacency-based construction using constructive geometric constraint solving.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Aliaga DG, Vanegas CA, Beneš B (2008) Interactive example-based urban layout synthesis. ACM Trans Graph 27:160:1–160:10

    Google Scholar 

  2. Ault HK (1999) Using geometric constraints to capture design intent. J Geom Graph 3(1):39–45

    MATH  Google Scholar 

  3. Bartle R (2004) Designing virtual worlds. New Riders, Indianapolis

    Google Scholar 

  4. Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput Surv 35:268–308

    Article  Google Scholar 

  5. Borcea C, Streinu I (2002) The number of embeddings of minimally rigid graphs. Discrete Comput Geom 31(2):287–303

    MathSciNet  Google Scholar 

  6. Cabral M, Lefebvre S, Dachsbacher C, Drettakis G (2009) Structure-preserving reshape for textured architectural scenes. Comput Graph Forum 28(2):469–480

    Article  Google Scholar 

  7. Cutler B, Dorsey J, McMillan L, Müller M, Jagnow R (2002) A procedural approach to authoring solid models. ACM Trans Graph 21:302–311

    Article  Google Scholar 

  8. Desbenoit B, Galin E, Akkouche S (2004) Simulating and modeling lichen growth. Comput Graph Forum 23(3):341–350

    Article  Google Scholar 

  9. Desbenoit B, Galin E, Akkouche S (2005) Modeling cracks and fractures. Vis Comput 21(8–10):717–726

    Article  Google Scholar 

  10. Efros AA, Leung TK (1999) Texture synthesis by non-parametric sampling. In: IEEE international conference on computer vision. Corfu, Greece, pp 1033–1038

    Chapter  Google Scholar 

  11. Fudos I, Hoffmann CM (1997) A graph-constructive approach to solving systems of geometric constraints. ACM Trans Graph 16(2):179–216

    Article  Google Scholar 

  12. Funkhouser T, Kazhdan M, Shilane P, Min P, Kiefer W, Tal A, Rusinkiewicz S, Dobkin D (2004) Modeling by example. In: SIGGRAPH ’04: ACM SIGGRAPH 2004 papers. ACM, New York, pp 652–663

    Chapter  Google Scholar 

  13. Gal R, Sorkine O, Mitra NJ, Cohen-or D (2009) iwires: An analyze-and-edit approach to shape manipulation. In: ACM SIGGRAPH transaction on graphics, pp 1–10

  14. Galin E, Peytavie A, Maréchal N, Guérin E (2010) Procedural generation of roads. Comput Graph Forum (Proceedings of Eurographics) 29(2):429–438

    Article  Google Scholar 

  15. Hnaidi H, Guérin E, Akkouche S, Peytavie A, Galin E (2010) Feature based terrain generation using diffusion equation. Comput Graph Forum (Proceedings of Pacific Graphics) 29(7):2179–2186

    Article  Google Scholar 

  16. Hoffmann CM, Joan-Arinyo R (2005) A brief on constraint solving. Comput-Aided Des Appl 2(5):655–663

    Google Scholar 

  17. Joan-Arinyo R, Soto-Riera A (1999) Combining constructive and equational geometric constraint solving techniques. ACM Trans Graph 18(1):35–55

    Article  Google Scholar 

  18. Joan-Arinyo R, Soto-Riera A, Vila-Marta S, Vilaplana J (2001) On the domain of constructive geometric constraint solving techniques. In: Duricovic R, Czanner S (eds) Spring conference on computer graphics, Budmerice, Slovakia, 25–28 April 2001. IEEE Computer Society, Los Alamitos, pp 49–54

  19. Joan-Arinyo R, Soto-Riera A, Vila-Marta S, Vilaplana J (2002) Declarative characterization of a general architecture for constructive geometric constraint solvers. In: Plemenos D (ed) The fifth international conference on computer graphics and artificial intelligence, Limoges, France, 14–15 May 2002. Université de Limoges, pp 63–76

  20. Joan-Arinyo R, Soto-Riera A, Vila-Marta S, Vilaplana J (2003) Transforming an unerconstrained geometric constraint problem into a wellconstrained one. In: Elber G, Shapiro V (eds) Eight symposium on solid modeling and applications. Seattle (WA), USA, 16–20 June 2003. ACM Press, pp 33–44

  21. Joan-Arinyo R, Tarrés-Puertas M, Vila-Marta S (2009) Treedecomposition of geometric constraint graphs based on computing graph circuits. In: SPM ’09: 2009 SIAM/ACM joint conference on geometric and physical modeling. ACM, New York, pp 113–122

    Chapter  Google Scholar 

  22. Joan-Arinyo R, Luzón MV, Yeguas E (2011) Parameter tuning of PBIL and CHC evolutionary algorithms applied to solve the Root Identification Problem. Appl Soft Comput 11(1):754–767

    Article  Google Scholar 

  23. Kwatra V, Schödl A, Essa I, Turk G, Bobick A (2003) Graphcut textures: image and video synthesis using graph cuts. ACM Trans Graph (SIGGRAPH 2003) 22(3):277–286

    Article  Google Scholar 

  24. Lipp M, Wonka P, Wimmer M (2008) Interactive visual editing of grammars for procedural architecture. ACM Trans Graph 27(3):102:1–102:10

    Article  Google Scholar 

  25. Luzón MV, Soto A, Gálvez JF, Joan-Arinyo R (2005) Searching the solution space in constructive geometric constraint solving with genetic algorithms. Appl Intell 22:109–124

    Article  MATH  Google Scholar 

  26. Mandelbrot B (1982) The fractal geometry of nature. W.H. Freeman, San Francisco

    MATH  Google Scholar 

  27. McLachlan G, Peel D (2000) Finite mixture models. Wiley, New York

    Book  MATH  Google Scholar 

  28. Mech R, Prusinkiewicz P (1996) Visual models of plants interacting with their environment. In: SIGGRAPH ’96: proceedings of the 23rd annual conference on computer graphics and interactive techniques. ACM, New York, pp 397–410

    Chapter  Google Scholar 

  29. Merrell P (2007) Example-based model synthesis. In: I3D ‘07: symposium on interactive 3D graphics and games. ACM, New York, pp 105–112

    Chapter  Google Scholar 

  30. Merrell P, Manocha D (2008) Continuous model synthesis. ACM Trans Graph 27(5):1–7

    Article  Google Scholar 

  31. Merrell P, Manocha D (2009) Constraint-based model synthesis. In: SPM ’09: 2009 SIAM/ACM joint conference on geometric and physical modeling. ACM, New York, pp 101–111

    Chapter  Google Scholar 

  32. Müller P, Zeng G, Wonka P, Gool LV (2007) Image-based procedural modeling of facades. ACM Trans Graphics (Proc. Siggraph) 26(3)

  33. Müller P, Wonka P, Haegler S, Ulmer A, Van Gool L (2006) Procedural modeling of buildings. ACM Trans Graph 25(3):614–623

    Article  Google Scholar 

  34. Musgrave FK, Kolb CE, Mace RS (1989) The synthesis and rendering of eroded fractal terrains. In: SIGGRAPH ’89: proceedings of the 16th annual conference on computer graphics and interactive techniques, vol 23. ACM Press, New York, pp 41–50

    Chapter  Google Scholar 

  35. Ostaszewski A (1990) Advanced mathematical methods. Cambridge University Press, New York

    MATH  Google Scholar 

  36. Parish YIH, Müller P (2001) Procedural modeling of cities. In: Fiume E (ed) COMPUTER GRAPHICS, Annual Conference Series, ACM. Proceedings of ACM SIGGRAPH, New York, pp 301–308

  37. Peachey DR (1985) Solid texturing of complex surfaces. In: Proceedings of the 12th annual conference on computer graphics and interactive techniques, SIGGRAPH ’85. ACM, New York, pp 279–286

    Chapter  Google Scholar 

  38. Peyrat A, Terraz O, Merillou S, Galin E (2008) Generating vast varieties of realistic leaves with parametric 2gmap l-systems. Vis Comput 24:807–816

    Article  Google Scholar 

  39. Peytavie A, Galin E, Merillou S, Grosjean J (2009) Arches: a framework for modeling complex terrains. Comput Graph Forum (Proceedings of Eurographics) 28(2):457–467

    Article  Google Scholar 

  40. Peytavie A, Galin E, Merillou S, Grosjean J (2009) Procedural generation of rock piles using aperiodic tiling. Comput Graph Forum (Proceedings of Pacific Graphics) 28(7):1801–1810

    Article  Google Scholar 

  41. Prusinkiewicz P, Mündermann L, Karwowski R, Lane B (2001) The use of positional information in the modeling of plants. In: Proceedings of the 28th annual conference on computer graphics and interactive techniques, SIGGRAPH ’01. ACM, New York, pp 289–300

    Chapter  Google Scholar 

  42. Shental N, Hertz T, Bar-Hillel A, Weinshall D (2003) Computing gaussian mixture models with em using side-information. In: Advances in neural information processing systems, vol 16. MIT Press, Cambridge

    Google Scholar 

  43. Smith J, Hodgins JK, Oppenheim I, Witkin A Creating models of truss structures with optimization. ACM Trans Graph (SIGGRAPH 2002) 21(1):295–301

    Google Scholar 

  44. SolBCN (2009) http://floss.lsi.upc.edu

  45. Streeting S (2010) Ogre 3d. http://www.ogre3d.org

  46. van Basten BJH, Peeters PWAM, Egges A (2010) The step space: example-based footprint-driven motion synthesis. Comput Animat Virtual Worlds 21:433–441

    Google Scholar 

  47. van den Bergen G (2001) Proximity queries and penetration depth computation on 3d game objects. In: Game developers conference, pp 821–837

  48. Vila S (2003) Contribution to geometric constraint solving in cooperative engineering. PhD thesis, Department Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya

  49. Wei L-Y, Lefebvre S, Kwatra V, Turk G (2009) State of the art in example-based texture synthesis. In: Eurographics 2009, state of the art report, EG-STAR. Eurographics Association, Aire-la-Ville

  50. Whiting E, Ochsendorf J, Durand F (2009) Procedural modeling of structurally-sound masonry buildings. ACM Trans Graph 28(5):112

    Article  Google Scholar 

  51. Wonka P, Wimmer M, Sillion F, Ribarsky W (2003) Instant architecture. ACM Trans Graph (Proceedings ACM SIGGRAPH 2003) 22(3):669–677

    Article  Google Scholar 

  52. Yeguas E, Joan-Arinyo R, Luzón MV (2011) Modelling the performance of evolutionary algorithms on the root identification problem: a case study with PBIL and CHC algorithms. Evol Comput 19(1):107–135

    Article  Google Scholar 

Download references

Acknowledgement

This work has been developed with the support of the Research Project ’TIN2010-18119’ financed by Science and Technology Ministry of Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Yeguas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeguas, E., Muñoz-Salinas, R. & Medina-Carnicer, R. Example-based procedural modelling by geometric constraint solving. Multimed Tools Appl 60, 1–30 (2012). https://doi.org/10.1007/s11042-011-0795-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-011-0795-0

Keywords

Navigation