Skip to main content
Log in

Face-based multiple instance analysis for smart electronics billboard

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper introduces a visual-based system, which can count the number of viewers and recognize their gender in front of an electronic billboard in real-time video streams. The viewers actually watching an advertisement are captured via frontal face detection techniques. To count the number of viewer precisely, the problem of occlusions between viewers is tackled. Besides, a complementary set of features is extracted from the torso of a viewer due to the fact that the part of the body contains relatively rich discriminative information than other body parts. In addition, for conducting robust viewer recognition, an online classifier trained by AdaBoost is developed. To recognize the gender of the counted viewers, an approach based on spatiotemporal probabilistic framework is proposed. Our experimental results demonstrate the robustness of the proposed system for the viewer counting and gender recognition tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Andreu Y, Mollineda RA, García-Sevilla P (2009) Gender recognition from a partial view of the face using local feature vectors. LNCS 5524:481–488

    Google Scholar 

  2. Balci K, Atalay V (2002) PCA for gender estimation: which eigenvectors contribute? Proc IEEE ICPR 3:363–366

    Google Scholar 

  3. Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell 24(24):509–522

    Article  Google Scholar 

  4. Bookstein FL (1989) Principal warps: thin-plate splines and decomposition of deformations. IEEE Trans Pattern Anal Mach Learn 11(6):567–585

    Article  MATH  Google Scholar 

  5. Cao L, Dikmen M, Fu Y, Huang TS (2008) Gender recognition from body. ACM international conference on Multimedia session 2:725–729

    Google Scholar 

  6. Chan AB, Liang ZS, Vasconcelos N (2008) Privacy preserving crowd monitoring: counting people without people models or tracking. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, June 2008

  7. Cho S-Y, Chow TWS, Leung C-T (1999) A neural-based crowd estimation by hybrid global learning algorithm. IEEE Trans Syst Man Cybern—Part B, 29(4), August 1999

  8. Collins R, Lipton A, Fujiyoshi H, Kanade T (2001) Algorithms for cooperative multisensor surveillance. Proc IEEE 89(10):1456–1477

    Article  Google Scholar 

  9. Fang Y, Wang Z (2008) Improving LBP features for gender classification. Proc International Conference on Wavelet Analysis and Pattern Recognition 1:373–377

    Article  MathSciNet  Google Scholar 

  10. Freund Y, Schapire RE (1996) Experiments with a new boosting algorithm. Proc. Int’l Conf. on Machine Learning pp 148–156

  11. Gallagher AC, Chen T (2009) Understanding images of groups of people. Proc IEEE CVPR pp 256–263

  12. Goh R, Liu L, Liu X, Chen TH (2005) The CMU Face In Action (FIA) Database. Proc IEEE Analysis and Modeling of Faces and Gestures pp 255–263

  13. Guo JM, Lin CC, Nguyen HS (2010) Face gender recognition using improved appearance-based average face difference and support vector machine. Proc. IEEE International Conference on System Science and Engineering, pp 637–640

  14. Haritaoglu I, Harwood D, Davis LS (2000) W4: real-time surveillance of people and their activities. IEEE Trans Pattern Anal Mach Intell 22(8), August 2000

  15. Huang C, Ai H, Li Y, Lao S (2007) High-performance rotation invariant multiview face detection. IEEE Trans Pattern Anal Mach Intell 29(4):671–686

    Article  Google Scholar 

  16. Kienzle W, Bakir G, Franz M, Scholkopf B (2005) Face detection—efficient and rank deficient. Adv Neural Inf Process Syst 17:673–680

    Google Scholar 

  17. Lapedriza A, Masip D, Vitria J (2005) Are external face features useful for automatic face classification? Proc IEEE CVPR pp 151–158, June 2005

  18. Lapedriza A, Marin-Jimenez MJ, Vitria J (2006) Gender recognition in non controlled environments. Proc IEEE ICPR 3:834–837

    Google Scholar 

  19. Lee DD, Seung HS (1999) Learning the parts of objects with nonnegative matrix factorization. Nature 401:788–791

    Article  Google Scholar 

  20. Lian HC, Lu BL (2007) Multi-view gender classification using multi-resolution local binary patterns and support vector machines. Int J Neural Syst 17:479–487

    Article  Google Scholar 

  21. Lin H, Lu H, Zhang L (2006) A new automatic recognition system of gender, age and ethnicity. The Sixth World Congress on Intelligent Control and Automation 2:9988–9991

    Article  Google Scholar 

  22. Lu H, Lin H (2007) Gender recognition using adaboosted feature. Proc International Conference on Natural Computation 2:646–650

    Google Scholar 

  23. Lu H, Huang Y, Chen Y, Yang D (2003) Automatic gender recognition based on pixel-pattern-based texture feature. J Real-Time Image Proc 3:109–116

    Article  Google Scholar 

  24. Mayo M, Zhang E (2008) Improving face gender classification by adding deliberately misaligned faces to the training data. Proc Int’l Conf Image and Vision Computing pp 1–5, Nov. 2008

  25. Moghaddam B, Yang MH (2000) Gender classification with support vector machines. Proc IEEE Automatic Face and Gesture Recognition, pp 306–311

  26. Nikolaus (2007) Learning the parts of objects using non-negative matrix factorization. Term Paper, Feb. 2007

  27. Osuna E, Freund R (1997) An improved training algorithm for support vector machine. Proc IEEE Workshop on Neural Networks for Signal Processing pp 276–285

  28. Otsu N (1979) A threshold selection method from Gray-Level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  MathSciNet  Google Scholar 

  29. Phillips PI, Wechsler H, Huang I, Rauss P (1998) The FERET database and evaluation procedure for face recognition algorithms. J Image Vis Comput 16(5):295–306

    Article  Google Scholar 

  30. Phillips PJ, Moon H, Rizvi SA, Rauss PI (2000) The FERET evaluation methodology for face recognition algorithms. IEEE Trans Pattern Anal Mach Intell 22:1090–1104

    Article  Google Scholar 

  31. Regazzoni CS, Tesei A (1996) Distributed data fusion for real-time crowding estimation. Signal Process 53:47–63

    Article  MATH  Google Scholar 

  32. Rodrigo V, Javier RDS, Mauricio C (2006) Gender classification of faces using Adaboost. Proc CIARP 4225:68–78

    Google Scholar 

  33. Schapire RE, Singer Y (1999) Improved boosting algorithms using confidence-rated predictions. Mach Learn 37(3):297–336

    Article  MATH  Google Scholar 

  34. Shen BC, Chen CS, Hsu HH (2009) Fast gender recognition by using a shared-integral-image approach. Proc IEEE ICASSP pp 521–524

  35. Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. Proc IEEE CVPR 1:511–518

    Google Scholar 

  36. Viola P, Jones MJ, Snow D (2003) Detecting pedestrians using patterns of motion and appearance. International Conference on Computer Vision

  37. WANG Y, AI H, WU B, HUANG C (2004) Real time facial expression recognition with Adaboost. Proc IEEE ICPR 3:926–929

    Google Scholar 

  38. Wu B, Ai H, Huang C (2003) LUT-based Adaboost for gender classification. Audio- and Video-Based Biometric Person Authentication 2688:104–110

    Article  Google Scholar 

  39. Wu B, Ai H, Huang C (2004) Facial image retrieval based on demographic classification. Proc IEEE ICPR 3:914–917

    Google Scholar 

  40. Yedidia JS, Freeman WT, Weiss Y (2001) Generalized belief propagation. In: Leen TK, Dietterich TG, Tresp V (eds) Advances in neural information processing systems, 13. MIT, Cambridge, pp 689–695

    Google Scholar 

  41. Yedidia JS, Freeman WT, Weiss Y (2001) Understanding belief propagation and its generalizations. Proc Int’l Conf on Artificial Intelligence

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duan-Yu Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, DY., Lin, KY. Face-based multiple instance analysis for smart electronics billboard. Multimed Tools Appl 59, 221–240 (2012). https://doi.org/10.1007/s11042-011-0746-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-011-0746-9

Keywords

Navigation