Advertisement

Multimedia Tools and Applications

, Volume 57, Issue 1, pp 131–144 | Cite as

Ice hockey shooting event modeling with mixture hidden Markov model

  • Xiaofeng Wang
  • Xiao-Ping ZhangEmail author
Article

Abstract

In this paper we present a new event analysis framework based on mixture hidden Markov model (HMM) for ice hockey videos. Hockey is a competitive sport and hockey videos are hard to analyze because of the homogeneity of its frame features. However, the temporal dynamics of hockey videos is highly structured. Using the mixture representation of local observations and Markov chain property of hockey event structure, we successfully model the hockey event as a mixture HMM. Based on the mixture HMM, the hockey event could be classified with high accuracy. Two types of mixture HMMs, Gaussian mixture and independent component analysis (ICA) mixture, are compared for the hockey video event classification. The results confirm our analysis that the mixture HMM is a suitable model to deal with videos with intensive activities. The new mixture HMM hockey event model could be a very useful tool for hockey game analysis.

Keywords

Event analysis Mixture hidden Markov model Finite state machine Independent component analysis Video content analysis Hockey video analysis 

References

  1. 1.
    Baillie M, Jose J, van Rijsbergen C (2004) HMM model selection issues for soccer video. In: Proc. int. conf. content-based image and video retrieval, pp 70–78Google Scholar
  2. 2.
    Chang P, Han M, Gong Y (2002) Extract highlights from baseball game video with hidden Markov models. In: Proc. int. conf. image processing, vol 1, pp 609–612Google Scholar
  3. 3.
    Drew M, Wei J, Li Z (1998) Illumination-invariant color object recognition via compressed chromaticity histograms of color-channel-normalize images. In: Proc. int’l. conf. computer vision, pp 533–540Google Scholar
  4. 4.
    Ekin A, Tekalp AM, Mehrotra R (2003) Automatic soccer video analysis and summarization. IEEE Trans Image Process 12(7):796–807CrossRefGoogle Scholar
  5. 5.
    Gibert X, Li H, Doermann D (2003) Sports video classification using HMM. In: Proc. int. conf. on multimedia and expo, vol 2, pp 345–348Google Scholar
  6. 6.
    Gong Y, Han M, Hua W, Xu W (2004) Maximum entropy model-based baseball highlight detection and classification. Comput Vis Image Underst 96(2):181–199CrossRefGoogle Scholar
  7. 7.
    Gong Y, Xu W (2007) Machine learning for multimedia content analysis. Springer, BerlinGoogle Scholar
  8. 8.
    Hanjalic A (2002) Shot-boundary detection: unraveled and resolved. IEEE Trans Circuit Syst Video Technol 12(2):90–104CrossRefGoogle Scholar
  9. 9.
    Hanjalic A (2004) Content-based analysis of digital video. Kluwer, NorwellzbMATHGoogle Scholar
  10. 10.
    Huang J, Liu Z, Wang Y (2000) Joint video scene segmentation and classification based on hidden Markov model. In: Proc. int. conf. on multimedia and expo. New York, pp 1551–1554Google Scholar
  11. 11.
    Jin G, Tao L, Xu G (2004) Hidden Markov model based events detection in soccer video. In: Proc. int. conf. on image analysis and recognition, pp I:605–I:612Google Scholar
  12. 12.
    Kijak E, Oisel L, Gros P (2003) Hierarchical structure analysis of sport videos using HMMs. In: Proc. int. conf. image processing, pp II:1025–II:1028Google Scholar
  13. 13.
    Kim H-G, Roeber S, Samour A, Sikora T (2004) Detection of goal events in soccer videos. In: Society of Photo-Optical Instrumentation Engineers (SPIE) conference series, vol 5682, pp 317–325Google Scholar
  14. 14.
    Lavee G, Rivlin E, Rudzsky M (2009) Understanding video events: A survey of methods for automatic interpretation of semantic occurrences in video. IEEE Trans Syst Man Cybern C Appl Rev 39(5):489–504CrossRefGoogle Scholar
  15. 15.
    Lee T, Lewicki MS, Sejnowski TJ (2000) ICA mixture models for unsupervised classification and automatic context switching. IEEE Trans Pattern Anal Mach Intell 22(10):1078–1089CrossRefGoogle Scholar
  16. 16.
    Li F, Woodham R (2009) Video analysis of hockey play in selected game situations. J Image Vis Comput 27(1–2):45–58zbMATHCrossRefGoogle Scholar
  17. 17.
    Liu S, Xu M, Yi H, Chia L, Rajan D (2006) Multimodal semantic analysis and annotation for basketball video. EURASIP J Appl Signal Process 2006:182–182Google Scholar
  18. 18.
    Liu Z, Huang J, Wang Y (1998) Classification of tv programs based on audio information using hidden Markov model. In: IEEE signal processing society workshop on multimedia signal processing, pp 27–32Google Scholar
  19. 19.
    Naphade M, Huang T (2002) Extracting semantics from audiovisual content: the final frontier in multimedia retrieval. IEEE Trans Neural Netw 13(4):793–810CrossRefGoogle Scholar
  20. 20.
    Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77(2):257–286CrossRefGoogle Scholar
  21. 21.
    Sadlier D, O’Connor N (2005) Event detection in field sports video using audio-visual features and a support vector machine. IEEE Trans Circuit Syst Video Technol 15(10):1225–1233CrossRefGoogle Scholar
  22. 22.
    Wang J, Xu C, Chng E (2006) Automatic sports video genre classification using pseudo-2d-hmm. In: The 18th international conference on pattern recognitionGoogle Scholar
  23. 23.
    Wang J, Xu C, Chng E, Tian Q (2004) Sports highlight detection from keyword sequences using hmm. In: IEEE international conference on multimedia and expoGoogle Scholar
  24. 24.
    Wang Y, Liu Z, Huang J (2000) Multimedia content analysis using both audio and visual cues. IEEE Signal Process Mag 17(6):12–36CrossRefGoogle Scholar
  25. 25.
    Xie L, Chang S (2004) Structure analysis of soccer video with hidden Markov models. Pattern Recogn Lett 25(7):767–775CrossRefGoogle Scholar
  26. 26.
    Xie L, Sundaram H, Campbell M (2008) Event mining in multimedia streams. Proc IEEE 96(4):623–647CrossRefGoogle Scholar
  27. 27.
    Xiong Z, Radhakrishnan R, Divakaran A, Huang TS (2003) Audio events detection based highlights extraction from baseball, golf and soccer games in a unified framework. In: Proc. int. conf. acoust., speech, signal processing, pp 401–404Google Scholar
  28. 28.
    Xu G, Ma Y, Zhang H, Yang S (2005) An HMM-based framework for video semantic analysis. IEEE Trans Circuit Syst Video Technol 15(11):1422–1433CrossRefGoogle Scholar
  29. 29.
    Yang Y, Lin S, Zhang Y, Tang S (2007) Statistical framework for shot segmentation and classification in sports video. In: Proc. Asian conference on computer vision, pp II:106–II:115Google Scholar
  30. 30.
    Zhang H, Kankanhalli A, Somaliar S (1993) Automatic partition of full-motion video. Multimedia Syst 1(1):11–28CrossRefGoogle Scholar
  31. 31.
    Zhou J, Zhang X (2005) Video shot boundary detection using independent component analysis. In: Proceedings. (ICASSP ’05). IEEE international conference on acoustics, speech, and signal processing, vol 2, pp 541–544Google Scholar
  32. 32.
    Zhou J, Zhang X (2008) An ICA mixture hidden Markov model for video content analysis. IEEE Trans Circuit Syst Video Technol 18(11):1576–1586CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringRyerson UniversityTorontoCanada

Personalised recommendations