Multimedia Tools and Applications

, Volume 58, Issue 1, pp 125–146 | Cite as

A genetic approach to Markovian characterisation of H.264 scalable video

  • Dieter Fiems
  • Bart Steyaert
  • Herwig Bruneel


We propose an algorithm for multivariate Markovian characterisation of H.264/SVC scalable video traces at the sub-GoP (Group of Pictures) level. A genetic algorithm yields Markov models with limited state space that accurately capture temporal and inter-layer correlation. Key to our approach is the covariance-based fitness function. In comparison with the classical Expectation Maximisation algorithm, ours is capable of matching the second order statistics more accurately at the cost of less accuracy in matching the histograms of the trace. Moreover, a simulation study shows that our approach outperforms Expectation Maximisation in predicting performance of video streaming in various networking scenarios.


H.264/SVC Traffic characterisation Markovian arrival process 



This work has been carried out in the framework of the Q-MATCH project sponsored by the Flemish Institute for the Promotion of Scientific and Technological Research in the Industry (IWT). The first author is a Postdoctoral Fellow with the Research Foundation, Flanders (F.W.O.-Vlaanderen), Belgium. A preliminary version of this paper was presented at the 15th International Conference on Analytical and Stochastic Modelling Techniques and Applications, Nicosia, Cyprus, 3–6 June 2008.


  1. 1.
    Alheraish AA, Alshebeili SA (2004) AR-based quadratic modeling for GOP MPEG-encoded video traffic in ATM networks. Comput Commun 27(1):81–92CrossRefGoogle Scholar
  2. 2.
    Ansari N, Liu H, Shi YQ, Zhao H (2002) On modeling MPEG video traffics. IEEE Trans Broadcast 48(4):337–347CrossRefGoogle Scholar
  3. 3.
    Baey S (2004) Modeling MPEG4 video traffic based on a customization of the DBMAP. In: Proceedings of SPECTS 2004Google Scholar
  4. 4.
    Baum LE, Petrie T, Soules N, Weis G (1970) A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann Math Stat 41:164–171CrossRefMATHGoogle Scholar
  5. 5.
    Blondia C, Casals O (1992) Statistical multiplexing of VBR sources: a matrix-analytic approach. Perform Eval 16(1–3):5–20CrossRefMATHGoogle Scholar
  6. 6.
    Conti M, Gregori E (2001) Modeling MPEG scalable sources. Multimedia Tools and Applications 13(2):127–145CrossRefMATHGoogle Scholar
  7. 7.
    Conti M, Gregori E, Larsson A (1996) Study of the impact of MPEG-1 correlations on video-sources statistical multiplexing. IEEE J Sel Areas Commun 14(7):1455–1471CrossRefGoogle Scholar
  8. 8.
    Dempster AP, Laird NM, Rubin DB (1976) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc 39:1–38MathSciNetGoogle Scholar
  9. 9.
    Hasslinger G (1997) Semi-Markovian modelling and performance analysis of variable rate traffic in ATM networks. Telecommun Syst 7(1–3):281–298CrossRefGoogle Scholar
  10. 10.
    Huang XD, Zhou YH, Zhang RF (2004) A multiscale model for MPEG-4 varied bit rate video traffic. IEEE Trans Broadcast 50(3):323–334CrossRefGoogle Scholar
  11. 11.
    Izquierdo MR, Reeves DS (1999) A survey of statistical source models for variable-bit-rate compressed video. Multimedia Syst 7(3):199–213CrossRefGoogle Scholar
  12. 12.
    Jurecková J, Kumar Sen P (1996) Robust Statistical Procedures: Asymptotics and Interrelations. Wiley series in probability and mathematical statistics, ISBN: 978-0-471-82221-9Google Scholar
  13. 13.
    Kempken S, Luther W (2007) Modeling of H.264 high definition video traffic using discrete-time semi-Markov processes. In: Managing traffic performance in converged networks, proceedings of the 20th international teletraffic congress (Lecture Notes in Computer Science 4516)Google Scholar
  14. 14.
    Kim H, Shroff N (2001) Loss probability calculations and asymptotic analysis for finite buffer multiplexers. IEEE/ACM Trans Netw 9(6):755–768CrossRefGoogle Scholar
  15. 15.
    Koza JR (1995) Survey of genetic algorithms and genetic programming. In: Proceedings of Wescon 1995, San Francisco, CAGoogle Scholar
  16. 16.
    Latouche G, Ramaswami V (1999) Introduction to matrix analytic methods in stochastic modeling. Series on statistics and applied probability. ASA-SIAMGoogle Scholar
  17. 17.
    Lazaris A, Koutsakis P, Paterakis M (2006) On modeling video traffic from multiplexed MPEG-4 videoconference streams. Next Generation Teletraffic And Wired/ Wireless Advanced Networking, Proceedings 4003:46–57CrossRefGoogle Scholar
  18. 18.
    Liebeherr J, Wrege DE (1998) Traffic characterization algorithms for VBR video in multimedia networks. Multimedia Syst 6:271–283CrossRefGoogle Scholar
  19. 19.
    Liew CH, Kodikara CK, Kondoz AM (2005) MPEG-encoded variable bit-rate video traffic modelling. IEE Proc, Commun 152(5):749–756CrossRefGoogle Scholar
  20. 20.
    Liporace LA (1982) Maximum likelihood estimation for mulitvariate observation of Markov sources. IEEE Trans Inf Theory 28(5):729–733MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Lombardo A, Morabito G, Schembra G (1998) An accurate and treatable Markov model of MPEG-video traffic. In: Proceedings of 17th conference on computer communications (INFOCOM 1998), San Francisco, California, pp 217–224Google Scholar
  22. 22.
    Macfadyen NW (2002) Traffic characterisation and modeling. BT Technol J 20(3):14–30CrossRefGoogle Scholar
  23. 23.
    Mitchell M (1996) An Introduction to Genetic Algorithms. MIT Press, ISBN 0262133164Google Scholar
  24. 24.
    Moltchanov D, Koucheryavy Y, Harju J (2003) The model of single smoothed MPEG traffic source based on the D-BMAP arrival process with limited state space. In: Proceedings of ICACT 2003, Phoenix Park, South Korea, pp 57–63Google Scholar
  25. 25.
    Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77(2):257–286CrossRefGoogle Scholar
  26. 26.
    Radha H, Chen Y, Parthasarathy K, Cohen R (1999) Scalable internet video using MPEG-4. Signal Process, Image Commun 15(1–2):95–126CrossRefGoogle Scholar
  27. 27.
    Schwartz H, Marpe D, Wiegand T (2007) Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Trans Circuits Syst Video Technol 17(9):1103–1120CrossRefGoogle Scholar
  28. 28.
    Seeling P, Reisslein M, Kulapala B (2004) Network performance evaluation using frame size and quality traces of single-layer and two-layer video: a tutorial. IEEE Communications Surveys 6(3):58–78CrossRefGoogle Scholar
  29. 29.
    Sivanandam SN, Deepa SN (2008) Introduction to genetic algorithms. Springer Berlin Heidelberg, ISBN 978-3-540-73189-4Google Scholar
  30. 30.
    Welch LR (2003) Hidden Markov models and the Baum-Welch algorithm. IEEE Inf Theory Soc Newsl 53(4):1,10–13MathSciNetGoogle Scholar
  31. 31.
    Won Y, Ahn S (2005) GOP ARIMA: modeling the nonstationarity of VBR processes. Multimedia Syst 10(5):359–378CrossRefGoogle Scholar
  32. 32.
    Zhang QT (1999) A general AR-based technique for the generation of arbitrary gamma VBR video traffic in ATM networks. IEEE Trans Circuits Syst Video Technol 9(7):1130–1137CrossRefGoogle Scholar
  33. 33.
    Zhao J, Li B, Ahmad I (2003) Traffic model for layered video: an approach on Markovian arrival process. In: Packet video 2003, Nantes, FranceGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.SMACS Research Group, Department of Telecommunications and Information ProcessingGhent UniversityGentBelgium

Personalised recommendations