Advertisement

Multimedia Tools and Applications

, Volume 56, Issue 3, pp 419–437 | Cite as

Video scene analysis in 3D wavelet transform domain

  • Zhi Li
  • Guizhong LiuEmail author
Article

Abstract

This paper proposes a novel scene analysis algorithm based on three-dimensional discrete wavelet transform (3D DWT). Based on the correlation among the adjacent frames, video frames can be considered as four categories: abrupt scene transition, motion scene, gradual scene transition and static scene, which are ranked from low to high according to the strength of the correlation. Through the investigation of the particular temporal and spatial distribution of each category, the correlation among adjacent frames could be described by the 3D DWT coefficients related statistical features, which are the energy of high-frequency coefficients difference, the sum of high-frequency coefficients magnitudes and the difference of low-frequency coefficients magnitudes. The energy of high-frequency coefficients difference is first used to detect the abrupt scene transition including cut and flashlight. Then all the three features are input to SVM for the purpose of analyzing the residual scenes and detecting the gradual scene transition, such as dissolve and fade. Experimental results show the method to be effective not only for the abrupt scene transition detection, but also for the gradual scene transition detection.

Keywords

3D DWT Cut Flashlight Dissolve Fade 

Notes

Acknowledgements

This work is supported in part by the National 973 Project (No.2007CB311002), National 863 Project (No.2009AA01Z409), and National Natural Science Foundation of China Project (NSFC, No.60903121).

References

  1. 1.
    Alattar AM (1993) Detecting and compressing dissolve regions in video sequences with DVI multimedia image compression algorithm. IEEE Int Symp Circuits Syst (ISCAS) 1:13–16CrossRefGoogle Scholar
  2. 2.
    Antonini M, Barlaud M, Mathieu P, Daubechies I (1992) Image coding using the wavelet transform. IEEE Trans Image Process 1(2):205–220CrossRefGoogle Scholar
  3. 3.
    Arman F, Hsu A, Chiu MY (1993) Feature management for large video databases. Proceeding Storage and Retrieval for Image and Video Databases I, SPIE 1908:2–12Google Scholar
  4. 4.
    Babu RV, Ramakrishnan KR (2002) Compressed domain motion segmentation for video object extraction. Proceeding IEEE Int Conf Acoust Speech Signal Process 4:3788–3791Google Scholar
  5. 5.
    Bouthemy P, Gelgon M, Ganansia F (1999) A unified approach to shot change detection and camera motion characterization. IEEE Trans Circuits Syst Video Technol 9(7):1030–1044CrossRefGoogle Scholar
  6. 6.
    Connor NO, Sav S, Adamek T, Mezaris V, Kompatsiaris I, Lui TY, Izquierdo E, Bennstrom CF, Casas JR (2003) Region and object segmentation algorithms in the qimera segmentation platform. Proceeding 3rd International workshop Content-Based Multimedia Indexing (CBMI03), pp 381–388Google Scholar
  7. 7.
    Coudert F, Benois-Pineau J, Barba D (1998) Dominant motion estimation and video partitioning with a 1D signal approach. Proceeding SPIE Conference on Multimedia storage and Archiving systems III 3527:283–294Google Scholar
  8. 8.
    Fernando WAC, Canagarajah CN (1999) Automatic detection of fade-in and fade-out in video sequences. IEEE International Symposium on Circuit and System, pp 255–258Google Scholar
  9. 9.
    Fernando WAC, Canagrajah CN, Bull DR (1999) Fade and dissolve detection in uncompressed and compressed video sequence. Proc - Int Conf Image Proc 3:299–303Google Scholar
  10. 10.
    Fernando WAC, Canagararajah CN, Bull DR (2000) Fade-in and fade-out detection in video sequences using histograms. Proc IEEE Int Symp Circ Syst 4:709–712Google Scholar
  11. 11.
    Gargi U, Kasturi R, Strayer SH (2000) Performance characterization of video-shot-change detection methods. IEEE Trans Circuits Syst Video Technol 10(2):1–13CrossRefGoogle Scholar
  12. 12.
    Guimarães SJF, Couprie M, de Araújo A, Leite NJ (2003) Video segmentation based on 2D image analysis. Pattern Recogn Lett 24(7):947–957CrossRefGoogle Scholar
  13. 13.
    Hampapur A, Jain R, Weymouth T (1995) Production model based digital video segmentation. Multimedia Tools and Application 1(1):9–46CrossRefGoogle Scholar
  14. 14.
    Heng WJ, Ngan KN (1999) Integrated shot boundary detection using object-based techniques. Proc - Int Conf Image Proc 3:289–293Google Scholar
  15. 15.
    Heng WJ, Ngan KN (2003) High accuracy flashlight scene determination for shot boundary detection. Signal Process Image Commun 18(3):203–219CrossRefGoogle Scholar
  16. 16.
    Hsu CW, Chang CC, Lin CJ (2004) A practical guide to support vector classification. Technical Report, Department of Computer Science and Information Engineering, National Taiwan University, Available at http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
  17. 17.
    ISO/IEC, ISO/IEC 15444-1, Information technology-JPEG 2000 image coding system-Part 1: Core coding system. http://www.jpeg.org, 2003
  18. 18.
    Jamrozik ML, Hayes MH (2002) A compressed domain video object segmentation system. Proc IEEE Int Conf Image Process 1:113–116CrossRefGoogle Scholar
  19. 19.
    Joyce RA, Liu B (2006) Temporal segmentation of video using frame and histogram space. IEEE Trans Multimedia 8:130–140CrossRefGoogle Scholar
  20. 20.
    Klock H, Polzer A, Buhmann JM (1997) Region-Based Motion Compensated 3D-Wavelet Transform Coding of Video. Proc - Int Conf Image Proc 2:776CrossRefGoogle Scholar
  21. 21.
    Krämer P, Benois-Pineau J, Domenger JP (2006) Scene Similarity Measure for Video Content Segmentation in the Framework of Rough Indexing Paradigm. Int J Intell Syst 21(7):765–783zbMATHCrossRefGoogle Scholar
  22. 22.
    Lam CF, Lee MC (1998) Video segmentation using color difference histogram. Lecture Notes in Computer Science 1464. Springer-Verlag, New York, pp 159–174Google Scholar
  23. 23.
    Li Z, Liu G (2008) A novel scene change detection based on 3D wavelet transform. IEEE International Conference on Image Processing, pp 1536–1539Google Scholar
  24. 24.
    Li Y, Gao X, Ji H (2003) A 3D wavelet based spatialtemporal approach for video watermarking, Proceeding of 5th International Conference on Computational Intelligence and Multimedia Applications, pp 260–265Google Scholar
  25. 25.
    Lienhart R (2001) Reliable transition detection in videos: a survey and practitioner’s guide. Int J Image Graph 1(3):469–486CrossRefGoogle Scholar
  26. 26.
    Luo L, Wu F, Li S, Xiong Z, Zhuang Z (2004) Advanced motion threading for 3D wavelet video coding. Signal Process Image Commun 19(7):60l–6l6CrossRefGoogle Scholar
  27. 27.
    Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet transform. IEEE Trans Pattern Anal Mach Intell 11(7):674–693zbMATHCrossRefGoogle Scholar
  28. 28.
    Meng J, Juan Y, Chang SF (1995) Scene change detection in a MPEG-compressed video sequence. Proceeding SPIE Digital Video Compression: Algorithms and Technologies 2419:14–25Google Scholar
  29. 29.
    Mezaris V, Kompatsiaris I, Boulgouris NV, Strintzis MG (2004) Real time compressed domain spatiotemporal segmentation and ontologies for video indexing and retrieval. IEEE Trans Circuits Syst Video Technol 14(5):606–612CrossRefGoogle Scholar
  30. 30.
    Nakajima Y (1994) A video browsing using fast scene cut detection for an efficient networked video database access. IEICE Trans Inf Syst E77-D(12):1355–1364Google Scholar
  31. 31.
    Park JH, Park SY, Kang SJ, Cho WH (2003) Content-based scene change detection of video sequence using hierarchical hidden Markov model. Lect Notes Comput Sci 2843:426–433CrossRefGoogle Scholar
  32. 32.
    Pei SC, Chou YZ (1999) Efficient MPEG compressed video analysis using macroblock type information. IEEE Trans Multimedia 1(4):321–333CrossRefGoogle Scholar
  33. 33.
    Pei SC, Chou YZ (2002) Effective wipe detection in MPEG compressed video using macro block type information. IEEE Trans Multimedia 4(3):309–319CrossRefGoogle Scholar
  34. 34.
    Primaux L, Benois-Pineau J, Krämer P, Domenger JP (2004) Shot boundary detection in the framework of rough indexing paradigm. In TREC Video Retrieval Evaluation Online Proceedings, TRECVID’04Google Scholar
  35. 35.
    Qian X, Liu G, Su R (2006) Effective Fades and Flashlight Detection Based on Accumulating Histogram Difference. IEEE Trans Circuits Syst Video Technol 16(10):1245–1258CrossRefGoogle Scholar
  36. 36.
    Shen K, Delp EJ (1995) A fast algorithm for video parsing using MPEG compressed sequences. IEEE International Conference on Image Processing, pp 252–255Google Scholar
  37. 37.
    Sifakis E, Tziritas G (2001) Moving object localization using a multilabel fast marching algorithm. Signal Process Image Commun 16:963–976CrossRefGoogle Scholar
  38. 38.
    Truong BT, Venkatesh S (2001) Determining dramatic intensification via flashing lights in movies. Proceeding IEEE International Conference Multimedia Expo, pp 60–63Google Scholar
  39. 39.
    Wang R, Zhang HJ, Zhang YQ (2000) A confidence measure based moving object extraction system built for compressed domain. Proc IEEE Int Symp Circ Syst 5:21–24Google Scholar
  40. 40.
    Wang J, Xu Y, Yu S, Zhou Y (2005) Flashlight scene detection for MPEG videos. IEEE 7th workshop on Multimedia Signal Processing, pp 1–4Google Scholar
  41. 41.
    Yeo B, Liu B (1995) Rapid scene analysis on compressed video. IEEE Trans Circuits Syst Video Technol 5(6):533–544CrossRefGoogle Scholar
  42. 42.
    Yi X, Ling N (2005) Fast pixel-based video scene change detection. Proceeding IEEE International Symposium on Circuits and Systems (ISCAS 2005), pp 3443–3446Google Scholar
  43. 43.
    Yuan J, Wang H, Xiao L, Zheng W, Li J, Lin F, Zhang B (2007) A Formal Study of Shot Boundary Detection. IEEE Trans Circuits Syst Video Technol 17(2):168–186CrossRefGoogle Scholar
  44. 44.
    Zabih R, Miller J, Mai K (1995) A feature-based algorithm for detecting and classifying scene breaks. Proceeding ACM Multimedia, pp 189–200Google Scholar
  45. 45.
    Zabih R, Miller J, Mai K (1999) A feature-based algorithm for detecting and classification production effects. Multimedia Syst 7:119–128CrossRefGoogle Scholar
  46. 46.
    Zhang H, Kankanhalli A, Smoliar S (1993) Automatic partitioning of full-motion video. ACM/Springer Multimedia Systems, pp 10–28Google Scholar
  47. 47.
    Zhang D, Qi W, Zhang HJ (2001) A new shot boundary detection algorithm. Proceeding Second IEEE Pac Rim Conf Multimed 2195:63–70Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of Electronic and Information EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations