Advertisement

Multimedia Tools and Applications

, Volume 55, Issue 3, pp 655–675 | Cite as

Human gait recognition using extraction and fusion of global motion features

  • Milene Arantes
  • Adilson GonzagaEmail author
Article

Abstract

This paper proposes a novel computer vision approach that processes video sequences of people walking and then recognises those people by their gait. Human motion carries different information that can be analysed in various ways. The skeleton carries motion information about human joints, and the silhouette carries information about boundary motion of the human body. Moreover, binary and gray-level images contain different information about human movements. This work proposes to recover these different kinds of information to interpret the global motion of the human body based on four different segmented image models, using a fusion model to improve classification. Our proposed method considers the set of the segmented frames of each individual as a distinct class and each frame as an object of this class. The methodology applies background extraction using the Gaussian Mixture Model (GMM), a scale reduction based on the Wavelet Transform (WT) and feature extraction by Principal Component Analysis (PCA). We propose four new schemas for motion information capture: the Silhouette-Gray-Wavelet model (SGW) captures motion based on grey level variations; the Silhouette-Binary-Wavelet model (SBW) captures motion based on binary information; the Silhouette–Edge-Binary model (SEW) captures motion based on edge information and the Silhouette Skeleton Wavelet model (SSW) captures motion based on skeleton movement. The classification rates obtained separately from these four different models are then merged using a new proposed fusion technique. The results suggest excellent performance in terms of recognising people by their gait.

Keywords

Human gait Gait recognition Gait analysis Biometry Fusion of characteristics Global motion 

Notes

Acknowledgments

The authors would like to thank the São Paulo State Foundation for Supporting Research (FAPESP) for their financial support of this research.

References

  1. 1.
    BenAbdelkader C, Cutler R, Davis L (2002) Motion-based recognition of people in Eingenspace space. Proceedings of fifth IEEE International Conference on Automatic Face Gesture Recognition. doi: 10.1109/AFGR.2002.1004165 Google Scholar
  2. 2.
    Bobick AF, Davis JW (2001) The recognition of human movement using temporal templates. IEEE Transactions on Pattern Analysis and Machine Intelligence. doi: 10.1109/34.910878 zbMATHGoogle Scholar
  3. 3.
    Boulgouris NV, Chi ZX (2007) Gait recognition using radon transform and linear discriminant analysis. IEEE Transactions on Image Processing. doi: 10.1109/ICIP.2006.313058 MathSciNetzbMATHGoogle Scholar
  4. 4.
    Burrus S, Gopinath RA, Guo H (1998) Introduction to wavelets and wavelet transform. A Primer. Houston, TexasGoogle Scholar
  5. 5.
    Chellappa R, RoyChowdhury A, Sundaresan A (2003) A hidden Markov model based framework for recognition of human from gait sequences. IEEE International Conference Image Processing. doi: 10.1109/ICIP.2003.1247165 Google Scholar
  6. 6.
    Collins RT, Gross R, Shi J (2002) Silhouette-based human identification from body shape and gait. Proc Int’l Conf Automatic Face and Gesture Recognition. doi: 10.1109/AFGR.2002.1004181 Google Scholar
  7. 7.
    Data Base, CASIA Gait. www.sinobiometrics.com. Acessed 29 July 2010
  8. 8.
    Havasi L, Szlavik Z, Sziranyi T (2007) Detection of gait characteristics for scene registration in video surveillance system. IEEE Transactions on Imagem Processing. doi: 10.1109/TIP.2006.888339 MathSciNetGoogle Scholar
  9. 9.
    Hong L, Jain A, Pankanti S (1999) Can multibiometrics improve performance? Proc AutoID’99. http://www.cse.msu.edu/publications/tech/TR/. Acessed 29 July 2010
  10. 10.
    Hong S, Lee H, Nizami IF et al (2007) A new gait representation for human identification: mass vector. Second IEEE Conference on ICIEA Applications. doi: 10.1109/ICIEA.2007.4318491 Google Scholar
  11. 11.
    Kale A, Cuntor N, Yegnanarayana B et al (2003) Gait analysis for Human Identification. AVBPA. http://www.cfar.umd.edu/~kale/avbpa.pdf. Acessed 29 July 2010
  12. 12.
    KawTraKullPong P, Bowden R (2001) An improved adaptative background mixture model for real-time tracking with shadow detection. In In Proc. 2nd European Workshop on Advanced Video Based Surveillance. http://personal.ee.surrey.ac.uk/Personal/R.Bowden/. Acessed 29 July 2010
  13. 13.
    Lam L, Lee S-W, Suen CY (1992) Thinning methodologies—a comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence. doi: 10.1109/34.161346
  14. 14.
    Lee L, Grimson WEL (2002) Gait analysis for recognition and classification. IEEE Conference on Face and Gesture Recognition. doi: 10.1109/AFGR.2002.1004148 Google Scholar
  15. 15.
    Library, Open Source Computer Vision. http://opencvlibrary.sourceforge.net. Acessed 29 July 2010
  16. 16.
    Liu Z, Sarkar S (2006) Improved gait recognition by gait dynamics normalization. IEEE Transactions on Pattern Analysis and machine Intelligence. doi: 10.1109/ICBBE.2007.142 Google Scholar
  17. 17.
    Liu J, Zheng N (2007) Gait history image: a novel temporal template fo gait recognition. IEEE International Conference on Multimedia and Expo. doi: 10.1109/ICME.2007.4284737 Google Scholar
  18. 18.
    Murase H, Sakai R (1996) Moving object recognition in eingenspace recognition. Gait analysis and lip reading. Pattern Recognition Letters. doi: 10.1016/0167-8655(95)00109-3 Google Scholar
  19. 19.
    Niyogi SA, Adelson EH (1994) Analysing and recognizing walking figures in XYT. Proceedings CVPR. doi: 10.1109/CVPR.1994.323868 zbMATHGoogle Scholar
  20. 20.
    Philips PJ, Moon H, Rizvi SA et al (2000) The FERET evaluation methodology for face-recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence. doi: 10.1109/34.879790 Google Scholar
  21. 21.
    Phillips PJ, Sarkar S, Robledo I et al (2002) Baseline results for challenge problem of human id using gait analysis. Proc IEEE International Conference on Automatic Face and Gesture Recognition. doi: 10.1109/AFGR.2002.1004145 Google Scholar
  22. 22.
    Sarkar S, Phillips PJ, Liu Z et al (2005) The human Id gait challenge problem: data sets. Performance and analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence. doi: 10.1109/TPAMI.2005.39 Google Scholar
  23. 23.
    Staufer C, Grimson WEL (1999) Adaptive background mixture models for real time tracking. IEEE Computer Society Conf on Computer Vision and Pattern Recognition. doi: 10.1109/CVPR.1999.784637 Google Scholar
  24. 24.
    Turk MA, Pentland AP (1991) Face recognition using eigenfaces. IEEE Computer Society Conference on CVPR’91. doi: 10.1109/CVPR.1991.139758 Google Scholar
  25. 25.
    Wang L, Tan T, Ning H, Hu W (2003) Silhouette analysis-based gait recognition for human identification. IEEE Transactions on Pattern Analysis and Machine Intelligence. doi: 10.1109/TPAMI.2003.1251144 Google Scholar
  26. 26.
    Winter D (1991) The Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathlogical. Walterloo Press, USAGoogle Scholar
  27. 27.
    Yang J, Wu X, Peng Z (2006) Gait recognition based on difference motion slice. ICSP Proceedings. doi: 10.1109/ICOSP.2006.345931 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of Engineering of São CarlosUniversity of Sao PauloSao PauloBrazil

Personalised recommendations