Advertisement

Multimedia Tools and Applications

, Volume 47, Issue 1, pp 207–224 | Cite as

A scalable and adaptive video streaming framework over multiple paths

  • Ivan Lee
  • Jong Hyuk ParkEmail author
Article

Abstract

In this paper, we examine the frame loss probabilities for multiple-description coded video transmitted over independent paths. We apply an efficient multiple description coding technique for the analysis, and we investigate the impact of drifting error in terms of the probability of receiving freeze frames for reconstructed video. In order to improve the video delivery, an adaptive video coding scheme by adjusting the length of group-of-pictures is investigated in this paper. In addition, a scalable video streaming framework from client-server, centralized peer-to-peer, and decentralized peer-to-peer network topologies are examined. Analytical and experimental results based on Gilbert model are used to evaluate the performance of the proposed adaptive and scalable video streaming framework.

Keywords

Video Streaming Peer-to-peer Multi-path 

Notes

Acknowledgements

This research was supported in part by the MKE (Ministry of Knowledge Economy), Korea, under the ITRC (Information Technology Research Center) Support program supervised by the IITA (Institute of Information Technology Advancement) (IITA-2008-C1090-0801-0020).

References

  1. 1.
    Chakareski J, Frossard P (2005) Distributed streaming via packet partitioning. In: Proc. of IEEE international conference on multimedia and expo, pp 1529–1532Google Scholar
  2. 2.
    Chakareski J, Frossard P (2006) Rate-distortion optimized distributed packet scheduling of multiple video streams over shared communication resources. IEEE Trans Multimedia 8(2):207–218CrossRefGoogle Scholar
  3. 3.
    Chow AL, Golubchik L, Lui JC, Lee W-J (2005) Multi-path streaming: optimization of load distribution. Perform Eval 62:417–438CrossRefGoogle Scholar
  4. 4.
    Clark DD, Tennenhouse DL (1990) Architectural considerations for a new generation of proctocals. In: SIGCOMM’90, Philadelphia, pp 200–208Google Scholar
  5. 5.
    Cui Y, Li B, Nahrstedt K (2004) oStream: asynchronous streaming multicast in application-layer overlay networks. IEEE J Sel Areas Commun 22(1):91–106CrossRefGoogle Scholar
  6. 6.
    Effelsberg W, Spaniol O, Danthine A, Ferrari D (eds) (1996) High-speed networking for multimedia applications. Kluwer Academic, DordrechtGoogle Scholar
  7. 7.
    Jeon WJ, Nahrstedt K (2002) Peer-to-peer multimedia streaming and caching service. In: Proc. of IEEE international conference on multimedia and expo, pp 57–60Google Scholar
  8. 8.
    Kanakia H, Mishra P, Reibman A (1993) Adaptive congestion control scheme for real-time packet video transport. In: SIGCOMM symposium on communications architecture and protocols, San Francisco, pp 20–31Google Scholar
  9. 9.
    Lee I, Guan L (2002) A scalable video codec design for streaming over distributed peer-to-peer network. In: Proc. of IEEE global telecommunications conference, vol 1, pp 539–543Google Scholar
  10. 10.
    Lee I, Guan L (2005) Reliable video communication with multi-path streaming. In: Proc. of IEEE international conference on multimedia and expoGoogle Scholar
  11. 11.
    Lee I, He Y, Guan L (2005) Centralized P2P streaming with MDC. In: Proc. of IEEE multimedia signal processing workshop, Shanghai, pp 189–192Google Scholar
  12. 12.
    Lee I, He Y, Guan L (2008) From centralized to decentralized video streaming using multiple descriptions coding. In: Proc. of international symposium on ubiquitous multimedia computing (UMC), pp 112–117Google Scholar
  13. 13.
    Ling Z, Lee I (2006) Adaptive multi-path video streaming. In: Proc. of IEEE international symposium on multimedia, San Diego, pp 399–406Google Scholar
  14. 14.
    Nahrstedt K, Steinmetz R (1995) Resource management in networked multimedia systems. IEEE Comput 28:52–63Google Scholar
  15. 15.
    Nguyen T, Zakhor A (2002) Distributed video streaming over the internet. In: Proc. of SPIE conference on multimedia computing and networking, pp 186–195Google Scholar
  16. 16.
    Roberts J, Mocci U, Virtamo J (1996) Broadband network teletraffic final report of action cost 242. Springer, New YorkGoogle Scholar
  17. 17.
    Rosu D (1999) Dynamic resource allocation for adaptive real-time applications. PhD thesis, Georgia Institute of TechnologyGoogle Scholar
  18. 18.
    Steinmetz R (1996) Human perception of jitter and media synchronization. IEEE J Sel Areas Commun 14:61–72CrossRefGoogle Scholar
  19. 19.
    Tran DA, Hua KA, Do TT (2002) Zigzag: an efficient peer-to-peer scheme for media streaming. Tech. rep., University of Central FloridaGoogle Scholar
  20. 20.
    Wang X, Schulzrinne H (1999) Comparison of adaptive internet multimedia applications. IEICE Trans Commun E82-B(6):806–818Google Scholar
  21. 21.
    Wu D, Hou YT, Zhu W, Zhang Y-Q, Peha JM (2001) Streaming video over the internet: approaches and directions. IEEE Trans Circuits Syst Video Technol 11(3):282–300CrossRefGoogle Scholar
  22. 22.
    Wu D, Hou YT, Zhu W, Lee H-J, Chiang T, Zhang Y-Q, Chao HJ (2000) On end-to-end architecture for transporting mpeg-4 video over the internet. IEEE Trans Circuits Syst Video Technol 18(6):977–995Google Scholar
  23. 23.
    Wu F, Li S, Zhang Y-Q (2001) A framework for efficient progressive fine granularity scalable video coding. IEEE Trans Circuits Syst Video Technol 11(3):332–344CrossRefGoogle Scholar
  24. 24.
    Yee JR, Weldon EJ (1995) Evaluation of the performance of error-correcting codes on a Gilbert channel. IEEE Trans Commun 43:2316–2323zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Computer and Information EngineeringUniversity of South AustraliaAdelaideAustralia
  2. 2.Department of Computer Science and EngineeringSeoul National University of TechnologySeoulSouth Korea

Personalised recommendations