Skip to main content
Log in

Incorporating packet semantics in scheduling of real-time multimedia streaming

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this work, we develop a novel packet scheduling algorithm that properly incorporates the semantics of a packet. We find that improvement in overall packet loss does not necessarily coincide with improvement in user perceivable QoS. The objective of this work is to develop a packet scheduling mechanism which can improve the user perceivable QoS. We do not focus on improving packet loss, delay, or burstiness. We develop a metric called, “Packet Significance,” that effectively quantifies the importance of a packet that properly incorporates the semantics of a packet from the perspective of compression. Packet significance elaborately incorporates inter-frame, intra-frame information dependency, and the transitive information dependency characteristics of modern compression schemes. We apply packet significance in scheduling the packet. In our context, packet scheduling consists of two technical ingredients: packet selection and interval selection. Under limited network bandwidth availability, it is desirable to transmit the subset of the packets rather than transmitting the entire set of packets. We use a greedy approach in selecting packets for transmission and use packet significance as the selection criteria. In determining the transmission interval of a packet, we incorporate the packet significance. Simulation based experiments with eight video clips were performed. We embed the decoding engine in our simulation software and examine the user perceivable QoS (PSNR). We compare the performance of the proposed algorithm with best effort scheduling scheme and one with simple QoS metric based scheduling scheme. Our Significance-Aware Scheduling scheme (SAPS) effectively incorporates the semantics of a packet and delivers best user perceivable QoS. SAPS can result in more packet loss or burstier traffic. Despite these limitations, SAPS successfully improves the overall user perceivable QoS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. Frame or layer is transported in the form of packets; hence, we use the packet information as the layer or frame information contained in the packet, and vice versa.

References

  1. Aras CM, Kurose J, Reeves DS, Schulzrinne H (1994) Real-time communication in packet-switched networks. In: Proceedings of the IEEE, vol 82, pp 122–139

  2. Argyriou A (2008) Cross-layer error control for multimedia streaming in wireless/wireline packet networks. IEEE Trans Multimedia 10(6):1121–1127

    Article  Google Scholar 

  3. Cai H, Zeng B, Shen G, Xiong Z, Li S (2007) Error-resilient unequal error protection of fine granularity scalable video bitstreams. EURASIP J Appl Signal Process 2006(1):118–118

    Google Scholar 

  4. Chakareski J, Frossard P (2005) Distributed packet scheduling of multiple video streams over shared communication resources. In: Proceedings on multimedia signal processing, IEEE, Shanghai, China, pp 1–4

  5. Chan HA (2007) Comparing wireless data network standards. In: Proceedings of AFRICON 2007, Windhoek, South Africa, pp 1–15

  6. Chen Y, Hu Y, Au O, Li H, Chen C (2008) Video error concealment using spatio-temporal boundary matching and partial differential equation. IEEE Trans Multimedia 10(1): 2–15

    Article  Google Scholar 

  7. Chou P, Miao Z (2006) Rate-distortion optimized streaming of packetized media. IEEE Trans Multimedia 8(2):390–404

    Article  Google Scholar 

  8. D’Auria B, Resnick S (2006) Data network models of burstiness. Trans Adv Appl Probab 38(2):373–404

    Article  MATH  MathSciNet  Google Scholar 

  9. Delgado G, Frias V, Igartua M (2006) Video-streaming transmission with qos over cross-layered ad hoc networks. In: Proceedings of SoftCOM 2006, Dubrovnik, Croatian, pp 102–106

  10. Dubois J (2007) Burstiness reduction of a doubly stochastic ar-modeled uniform activity vbr video. Transactions on World Academy of Science, Engineering and Technology 23:454–458

    Google Scholar 

  11. Giordano S, Pagano M, Pannocchia R, Russa F (1996) A new call admission control scheme based on the self similarnature of multimedia traffic. In: Proceedings of IEEE communications, conference record, converging technologies for tomorrow’s applications, 1996, Dallas, TX, USA, pp (3)1612–1618

  12. Givoni M (2006) Development and impact of the modern high-speed train: a review. Transactions on Transdisciplinary Journal, Transport Reviews 26(5):593–611(19)

    Google Scholar 

  13. Ha V, Choi S, Jeon J, Lee G, Shim W (2004) Portable receivers for digital multimedia broadcasting. IEEE Trans Consum Electron 50(2):666–673

    Article  Google Scholar 

  14. Hei X, Liang C, Liang J, Liu Y, Ross K (2007) A measurement study of a large-scale p2p iptv system. IEEE Trans Multimedia 9(8):1672–1687

    Article  Google Scholar 

  15. Huan Yu C, Hongshen C, Jenqneng H, Jianshung W (2005) Bitplane coding of DCT coefficients for image and video compression. In: Proceedings on circuits and systems, 2005. ISCAS 2005. IEEE International Symposium on, Kobe, JAPAN, vol 4, pp 3419–3422

  16. Information technology (2002) Coding of audio-visual objects—part 2: visual

  17. Kim G, Kim J (2007) Wavelength division multiplexing-passive optical network based ftth field trial test. J Opt Soc Korea 11(3):101–107

    Article  Google Scholar 

  18. Kim T, Ammar MH (2003) Optimal quality adaptation for MPEG-4 fine-grained scalable video. In: Proceedings of IEEE INFOCOM 2003 San Francisco, CA, USA

  19. Lam SS, Chow S, Yau DK (1994) An algorithm for lossless smoothing of mpeg video. Transactions on SIGCOMM Comput Commun Rev 24(4):281–293

    Article  Google Scholar 

  20. Li W (2001) Overview of fine granularity scalability in MPEG-4 video standard. IEEE Trans Circuits Syst Video Technol 11(3):301–317

    Article  Google Scholar 

  21. Mansour H, Nasiopoulos P, Krishnamurthy V (2008) Real-time joint rate and protection allocation for multi-user scalable video streaming. In: IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, 2008. PIMRC 2008, Juan-les-Pins, France. ACM, New York, pp 1–5

    Chapter  Google Scholar 

  22. Mayer-Patel K, Le L, Carle G (2002) An mpeg performance model and its application to adaptive forward error correction. In: IMC ’02: Proceedings of the tenth ACM international conference on multimedia, Juan-les-Pins, France. ACM, New York, pp 1–10

    Chapter  Google Scholar 

  23. MEncoder (2009) Program for encoding video+audio [online]. http://www.mplayerhq.hu/.

  24. Politis I, Tsagkaropoulos M, Pliakas T, Dagiuklas T (2007) Distortion optimized packet scheduling and prioritization of multiple video streams over 802.11e networks. Advances in Multimedia 2007(1):1–11. doi:10.1155/2007/76846

    Article  Google Scholar 

  25. Rejaie R, Handley M Estrin D (1999) RAP: an end-to-end rate-based congestion control mechanism for realtime streams in the internet. In: Proceedings of IEEE INFOCOM, New York, NY, USA, vol 3, pp 1337–1345

  26. Richardson IE (2003) H.264 and MPEG-4 video compression: video coding for next-generation multimedia. Wiley, New York

    Book  Google Scholar 

  27. Salehi JD, Zhang Z, Kurose J, Towsley D (1998) Supporting stored video: reducing rate variability and end-to-end resource requirements through optimal smoothing. IEEE Trans Netw 6(4):397–410

    Article  Google Scholar 

  28. The network simulator - ns-2 Information Sciences Institute [online]. http://nsnam.isi.edu/nsnam/index.php/user_information

  29. Video traces file [online]. http://www.dmclab.hanyang.ac.kr/data/mpeg2data/video_traces.htm

  30. Watkinson J (2007) MPEG handbook. MIT, Cambridge

    Google Scholar 

  31. Won Y, Shim B (2002) Effect of VBR traffic smoothing on broadband wireless Internet. In: Proceedings of SPIE ITCOM 2002, Boston, MA, USA, vol 4865, pp 225–233

  32. Won Y, Shim B (2002) Empirical study of VBR traffic smoothing in wireless environment. In: Proceedings of the second international workshop on Innovative Internet Computing Systems, vol 2346 of Lect Notes Comput Sci. Springer, New York, pp 193–204

    Google Scholar 

  33. Won Y, Jung J, Jun Y, Chang I, Hong S (2007) Qos weighted scheduling: real-time streaming of multi-resolution video. In: Proceedings of Graphics and Visualization in Engineering (GVE 2007), Clearwater, Florida, USA

  34. Wu J, Cai J, Chen C (2007) Single-pass rate-smoothed video encoding with quality constraint. IEEE Trans Signal process Letters 14(10):715–718

    Article  Google Scholar 

  35. Zipper J, Stoger C, Hueber G, Vazny R, Schelmbauer W, Adler B, Hagelauer R (2007) A single-chip dual-band cdma2000 transceiver in 0.13 m cmos. IEEE J Solid-State Circuits 42(12): 2785–2794

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungwoo Hong.

Additional information

This research was in part supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government(MEST) (No. R0A-2009-0083128) and the MKE(The Ministry of Knowledge Economy), Korea, under the ITRC(Information Technology Research Center) support program supervised by the NIPA(National IT Industry Promotion Agency (NIPA-2009-(C1090-0902-0033)).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, S., Won, Y. Incorporating packet semantics in scheduling of real-time multimedia streaming. Multimed Tools Appl 46, 463–492 (2010). https://doi.org/10.1007/s11042-009-0386-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-009-0386-5

Keywords

Navigation