Skip to main content
Log in

A zero-overhead error-correcting nVoD schema

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper we present a novel multicast near-Video on Demand (nVoD) coding schema, which relies on the intrinsic redundancy of the underlying nVoD protocol to provide implicit error correction, by employing content segments as blocks for coding operations. As a result, this implicit error correction has zero overhead, unlike the direct application of error-correcting codes, which increase content bitrate in the same proportion as target error probability. The findings in this paper indicate that our proposal outperforms previous approaches with explicit error correction (error protection within content segments) in terms of transmission bandwidth for the same packet loss probability. We present an analytical approach that can be used to tune implicit error correction (coding matrix selection), which we validate with simulations. We also simulate the impact of the coding schema on two different nVoD protocols, fast broadcasting (FB) and recursive frequency splitting (RFS). Finally, we show the benefits of applying this schema to a real scenario with WiMax transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Asorey-Cacheda R, González-Castaño FJ (2008) A multicast nVoD schema with zero-overhead implicit error correction. In: Proc. IEEE intl. communications conference 2008, 19–23 May 2008, pp 2017–2020

  2. Azad SA, Murshed M, Dooley LS (2003) A novel batched multicast patching scheme for video broadcasting with low user delay. In: Proc. 3rd IEEE international symposium on signal processing and information technology (ISSPIT), pp 339–342

  3. Eager D, Vernon M, Zahorjan J (1999) Bandwidth skimming: a technique for cost-effective video-on-demand. Tech. Rep. CS-TR-1999-1408, Computer Science Department, Univ. of Wisconsin-Madison

  4. Hua KA, Cai Y, Sheu S (1998) Patching: a multicast technique for true video-on-demand services. In: Proc. 6th ACM international conference on multimedia, pp 191–200

  5. Janakiraman R, Waldvogel M, Xu L (2002) Fuzzycast: efficient video-on-demand over multicast. In: Proc. Infocom 2002, pp 920–929

  6. Juhn L, Tseng L (1997) Harmonic broadcasting for video-on-demand service. IEEE Trans Broadcast 43(3):268–271

    Article  Google Scholar 

  7. Juhn L, Tseng L (1997) Fast broadcasting for hot video access. In: Proc. 4th international workshop on real-time computing systems and applications, 27–29 October 1997, pp 237–243

  8. Ma H, Shin KG (2002) Multicast video-on-demand services. ACM Comput Commun Rev 32(1):31–43

    Article  Google Scholar 

  9. Ma H, Shin KG, Wu W (2005) Best-effort patching for multicast true VoD service. Multimedia Tools and Applications 26(1):101–122

    Article  Google Scholar 

  10. Mahanti A, Eager D, Vernon MK, Sundaram-Stukel DJ (2003) Scalable on-demand media streaming with packet loss recovery. IEEE/ACM Trans Netw 11(2):195–209

    Article  Google Scholar 

  11. Paris JF (1999) A simple low-bandwidth broadcasting protocol for video-on-demand. In: Proc. 8th intl. conf. on computer communications and networks, pp 690–697

  12. Paris JF (2001) A fixed-delay broadcasting protocol for video-on-demand. In: Proc. 10th intl. conf. on computer communications and networks, pp 418–423

  13. Paris JF (2005) A simple but efficient broadcasting protocol for video-on-demand. In: Proc. 24th IEEE intl. performance, computing, and communications conference, 7–9 April 2005, pp 167–174

  14. Peng C, Shen H, Xiong N, Yang LT (2006) Discrete broadcasting protocols for video-on-demand. Lect Notes Comput Sci 4208:642–652

    Article  Google Scholar 

  15. Reisslein M, Saparilla D, Ross KW (2004) Periodic broadcasting with VBR-encoded video. Multimedia Systems 9, pp 503–516

    Google Scholar 

  16. Sujatha DN, Girish K, Venugopal KR, Patnaik LM (2007) An integrated quality-of-service model for video-on-demand application. IAENG Int J Comput Sci 34(1):1–10

    Google Scholar 

  17. Sun Y, Kameda T (2005) Harmonic block windows scheduling through harmonic windows scheduling. Multimed Inf Syst 3665:190–206

    Article  Google Scholar 

  18. Tseng Y-C, Yang M-H, Chang C-H (2002) A recursive frequency-splitting scheme for broadcasting hot videos in VOD service. IEEE Trans Commun 50(8):1348–1355

    Article  Google Scholar 

  19. Xie F, Hua KA, Jiang N (2007) Achieving true video-on-demand service in multi-hop wimax mesh networks. In: Proc. 32nd IEEE conference on local computer networks, 15–18 October 2007, pp 287–294

  20. Yu H-F (2008) Hybrid broadcasting with small buffer demand and waiting time for video-on-demand applications. IEEE Trans Broadcast 54(2):304–311

    Article  Google Scholar 

  21. Yu H-F, Yang H-C, Tseng L-M (2007) Reverse fast broadcasting (RFB) for video-on-demand applications. IEEE Trans Broadcast 53(1):103–111

    Article  Google Scholar 

  22. Yu H-F, Chen Y-N, Yang H-C, Yang Z-Y, Tseng L-M (2008) An efficient scheme for broadcasting popular videos at low buffer demand. Comput Commun 31(10):2270–2279

    Article  Google Scholar 

  23. Yu H-F, Yang H-C, Wang Y-T, Fan P-L, Chien C-Y (2009) Broadcasting scheme with low client buffers and bandwidths for video-on-demand applications. Multimedia Tools and Applications 42(3):295–316

    Article  Google Scholar 

  24. Yu H-F, Ho P-H, Yang H-C (2009) Generalized sequence-based and reverse sequence-based models for broadcasting hot videos. IEEE Trans Multimedia 11(1):152–165

    Article  Google Scholar 

Download references

Acknowledgements

The work described in this paper has been supported by grants MIND-GAP-5 PGIDIT 08TIC010CT (Xunta de Galicia, Spain) and CON-PARTE-2 TEC2007-67966-C03-02 (Ministerio de Educación y Ciencia, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. González-Castaño.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Castaño, F.J., Asorey-Cacheda, R., Cerezo-Costas, H. et al. A zero-overhead error-correcting nVoD schema. Multimed Tools Appl 48, 291–312 (2010). https://doi.org/10.1007/s11042-009-0331-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-009-0331-7

Keywords

Navigation