Multimedia Tools and Applications

, Volume 44, Issue 2, pp 161–186 | Cite as

Combining graph connectivity & dominant set clustering for video summarization

  • D. Besiris
  • A. Makedonas
  • G. Economou
  • S. Fotopoulos


The paper presents an automatic video summarization technique based on graph theory methodology and the dominant sets clustering algorithm. The large size of the video data set is handled by exploiting the connectivity information of prototype frames that are extracted from a down-sampled version of the original video sequence. The connectivity information for the prototypes which is obtained from the whole set of data improves video representation and reveals its structure. Automatic selection of the optimal number of clusters and hereafter keyframes is accomplished at a next step through the dominant set clustering algorithm. The method is free of user-specified modeling parameters and is evaluated in terms of several metrics that quantify its content representational ability. Comparison of the proposed summarization technique to the Open Video storyboard, the Adaptive clustering algorithm and the Delaunay clustering approach, is provided.


Video summary Prototype set Connectivity graph Dominant set 



This work was financed by the European Social Fund (ESF), Operational Program for Educational and Vocational Training II (EPEAEK II), and particularly the Program “New graduate programs of University of Patras”.


  1. 1.
    Behzard S, Gibbon DS (1995) Automatic generation of pictorial transcripts of video programs. Proc SPIE Multimedia Computer Networking 2417:512–518Google Scholar
  2. 2.
    Boreczky JS, Rowe LA (1996) Comparison of video shot boundary detection techniques. Proc Int Conf Storage Retr Still Image Video Databases 5(2):170–179Google Scholar
  3. 3.
    Bovic AC (2000) Handbook of image and video processing. Bovic Academic Press 2000 9(2):705–715Google Scholar
  4. 4.
    Chanq HS, Sull S, Lee SU (1999) Efficient video indexing scheme for content-based retrieval. IEEE Trans Circ Syst Video Tech 9(8):1269–1279. doi: 10.1109/76.809161 CrossRefGoogle Scholar
  5. 5.
    Cooper M, Foote J (2005) Discriminative techniques for keyframe selection. IEEE Int. Conf Multimedia and Expo (ICME) 502–505Google Scholar
  6. 6.
    DeMenthon D, Doermann DS, Kobla V (1998) Video summarization by curve simplification. Proc. ACM Multimedia 211–218Google Scholar
  7. 7.
    Divakaran A, Radhakrishnanp R, Peker KA (2002) Motion activity-based extraction of key-frames from video shots. Int Conf Image Process 1:932–935Google Scholar
  8. 8.
    Dufaux F (2000) Key frame selection to represent a video. Proc ICIP Conf 2:275–278Google Scholar
  9. 9.
    Gibson DNC, Thomas B (2002) Visual abstraction of wildlife footage using Gaussian mixture models. Proc. 15th Int. Conf Vision InterfaceGoogle Scholar
  10. 10.
    Girgensohn A, Boreczky J (1999) Time-constrained keyframe selection technique. IEEE Int Conf Multimedia Comput Syst 1:756–761CrossRefGoogle Scholar
  11. 11.
    Gong Y, Liu X (2003) Video summarization and retrieval using singular video decomposition. ACM Multimedia Syst 9(2):157–168. doi: 10.1007/s00530-003-0086-3 CrossRefGoogle Scholar
  12. 12.
    Hanjalic A, Zhanq HonqJianq (1999) An integrated scheme for automated video abstraction based on unsupervised cluster-validity analysis. IEEE Trans Circ Syst Video Tech 9(8):1280–1289. doi: 10.1109/76.809162 CrossRefGoogle Scholar
  13. 13.
    He L, Sanocki E, Gupta A, Grudin J (1999) Auto-Summarization of audio-video presentations. Proc. ACM Multimedia Conf. (ACMMM) 489–498Google Scholar
  14. 14.
    Laskaris NA, Zafeiriou SP (2008) Beyond FCM: graph-theoretic post-processing algorithms for learning and representing the data structure. Pattern Recognit 41(8):2630–2644. doi: 10.1016/j.patcog.2008.02.005 MATHCrossRefGoogle Scholar
  15. 15.
    Latecki LJ, Widldt DD, Hu J (2001) Extraction of key frames from videos by optimal color composition matching and polygon simplification. Proc. Multimedia Signal Process Conf. (France)Google Scholar
  16. 16.
    Liu T, Kender JR (2002) An efficient error-minimizing algorithm for variable-rate temporal video sampling. Proc. Int. Conf. Multimedia Expo (ICME)Google Scholar
  17. 17.
    Liu T, Zhanq H-J, Qi F (2003) A novel video key-frame extraction algorithm based on perceived motion energy model. IEEE Trans Circ Syst Video Tech 13(10):1006–1013. doi: 10.1109/TCSVT.2003.816521 CrossRefGoogle Scholar
  18. 18.
    Liu T, Zhang X, Feng J, Lo K-T (2004) Shot reconstruction degree: a novel criterion for keyframe selection. Pattern Recognit Lett 25(12):1451–1457. doi: 10.1016/j.patrec.2004.05.020 CrossRefGoogle Scholar
  19. 19.
    Marchionini G, Geisler G (2002) The open video digital library. D-Lib 8(12). doi: 10.1045/december2002-marchionini
  20. 20.
    Motzkin TS, Straus EG (1965) Maxima for graphs and a new proof of a theorem of Turan. Can J Math 17:533–540MATHMathSciNetGoogle Scholar
  21. 21.
    Mundur P, Rao Y, Yesha Y (2006) Keyframe-based video summarization using Delaunay clustering. Int J Digit Libr 6(2):219–232. doi: 10.1007/s00799-005-0129-9 CrossRefGoogle Scholar
  22. 22.
    Pavan M, Pelillo M (2007) Dominant sets and pairwise clustering. IEEE Trans Pattern Anal Mach Intell 29(1):167–172. doi: 10.1109/TPAMI.2007.250608 CrossRefGoogle Scholar
  23. 23.
    Ueda H, Miyatake T, Yoshizawa S (1991) Impact: an interactive natural picture dedicated multimedia authoring systems. Proc. SIGCHI Conf Human factors Computer Systems 343–350Google Scholar
  24. 24.
    Weibull JW (1995) Evolutionary game theory. MIT PressGoogle Scholar
  25. 25.
    Xiong W, Lee JCM, Ma RH (1997) Automatic video data structuring through shot partitioning and key frame computing. Mach Vis Appl 10(2):51–65. doi: 10.1007/s001380050059 CrossRefGoogle Scholar
  26. 26.
    The Open Video Project
  27. 27.
    The MPEG Software Simulation Group
  28. 28.
    Yahiaoui I, Merialdo B, Huet B (2001) Automatic video summarization. Proc. CBMIR ConfGoogle Scholar
  29. 29.
    Yeung MM, Liu B (1995) Efficient matching and clustering of video shots. Proc Int Conf Image Process 1:338–341. doi: 10.1109/ICIP.1995.529715 CrossRefGoogle Scholar
  30. 30.
    Yu X D, Wang L, Tian Q, Xue P (2004) Multi-level video representation with application to keyframe extraction. Proc. Int. Conf. Multimedia Modelling (MMM) 117–121Google Scholar
  31. 31.
    Zhang DQ, Lin CY, Chang SF, Smith JR (2004) Semantic video clustering across sources using bipartite spectral clustering. Proc IEEE Conf Multimedia Expo (ICME) 1:117–120CrossRefGoogle Scholar
  32. 32.
    Zhuang Y, Rui Y, Huang TS, Mehrotra S (1998) Adaptive key frame extraction using unsupervised clustering. Proc Int Conf Image Process 1:866–870Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • D. Besiris
    • 1
  • A. Makedonas
    • 1
  • G. Economou
    • 1
  • S. Fotopoulos
    • 1
  1. 1.Electronics Laboratory, Department of PhysicsUniversity of PatrasRioGreece

Personalised recommendations