Multimedia Tools and Applications

, Volume 38, Issue 3, pp 365–384 | Cite as

3D posture estimation using geodesic distance maps

  • Pedro CorreaEmail author
  • Ferran Marqués
  • Xavier Marichal
  • Benoit Macq


This paper presents a novel technique for three-dimensional (3D) human motion capture using a set of two non-calibrated cameras. The user’s five extremities (head, hands and feet) are extracted, labeled and tracked after silhouette segmentation. As they are the minimal number of points that can be used in order to enable whole body gestural interaction, we will henceforth refer to these features as crucial points. Features are subsequently labelled using 3D triangulation and inter-image tracking. The crucial point candidates are defined as the local maxima of the geodesic distance with respect to the center of gravity of the actor region that lie on the silhouette boundary. Due to its low computational complexity, the system can run at real-time paces on standard personal computers, with an average error rate range between 4% and 9% in realistic situations, depending on the context and segmentation quality.


Motion capture Silhouette analysis Gestural interfaces Geodesic distance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bray M, Koller-Meier E, Schraudolph N, Van Gool L (2004) Stochastic meta-descent for tracking articulated structures. In: IEEE Workshop on Articulated and Nonrigid Motion (ANM04) Washington D.C., June 2004Google Scholar
  2. 2.
    Correa Hernández P, Czyz J, Umeda T, Marqués F, Marichal X, Macq B (2007) Bayesian approach for morphology-based 2D human motion capture. IEEE Trans Multimed 9(4):754–765CrossRefGoogle Scholar
  3. 3.
    Demirdjian D, Darrell T (2002) 3-D Articulated pose tracking for untethered diectic reference. In: ICMI 2002, Pittsburgh, October 2002Google Scholar
  4. 4.
    Fujiyoshi H, Lipton A (1998) Real-time human motion analysis by image skeletonization. In: IEEE Workshop on Applications of Computer Vision (WACV), Princeton, October 1998, pp 15–21Google Scholar
  5. 5.
    Gavrila DM (1999) The visual analysis of human movement: a survey. Comput Vis Image Underst 73(1):82–98, JanuaryCrossRefzbMATHGoogle Scholar
  6. 6.
    Haralick R, Shapiro L (1992) Computer and robot vision, vol. 1–2. Addison-Wesley, ReadingGoogle Scholar
  7. 7.
    Haritaoglu I, Harwood D, Davis LS (2000) W4: real-time surveillance of people and their activities. IEEE Trans Pattern Anal Mach Intell 22(8):809–830, AugustCrossRefGoogle Scholar
  8. 8.
    Johansson G (1973) Visual perception for biological motion and a model for its analysis. Percept Psychophys 14(2):201–211Google Scholar
  9. 9.
    Kuhn H (1955) The Hungarian method for the assignment problem. Nav Res Logist Q 2:83–97CrossRefMathSciNetGoogle Scholar
  10. 10.
    Lanier J (2001) Virtually there. Sci Am 284:66–75, AprilCrossRefGoogle Scholar
  11. 11.
    Marichal X, Macq B, Douxchamps D, T. Umeda and the consortium (2003) ‘Real-time segmentation of video objects for mixed-reality interactive applications.’ In: VCIP 2003—SPIE Visual Communication and Image Processing Intl Conference, vol. 5150. Lugano, Switzerland, July 2003, pp 41–50Google Scholar
  12. 12.
    Ohya J, Utsumi A, Yamato J (2002) Analyzing video sequences of multiple humans—tracking, posture estimation and behavior recognition. The Kluwer international series in video computing, vol. 3. Kluwer, NorwellGoogle Scholar
  13. 13.
    Perrone C, Clark D, Repenning A (1996) WebQuest: substantiating education in edutainment through interactive learning games. Comput Netw ISDN Syst 28(7–11):1307Google Scholar
  14. 14.
    Soille P (2003) Morphological image analysis, principles and applications, 2nd edn. Springer, BerlinzbMATHGoogle Scholar
  15. 15.
    Soriano M, Martinkauppi B, Huovinen S, Laaksonen M (2000) Skin detection in video under changing illumination conditions. In: Proc.of the 15th Int. Conf. on Pattern Recognition, September 2000Google Scholar
  16. 16.
    Umeda T, Correa Hernández P, Marqués F, Marichal X (2004) A real-time body analysis for mixed reality application. In: Proc. of the Tenth Korea–Japan Joint Workshop on Frontiers of Computer Vision, FCV-2004, Fukuoka, Japan, February 2004Google Scholar
  17. 17.
    Wren C, Azarbayejani A, Darrell T, Pentland A (1997) Pfinder: real-time tracking of the human body. IEEE Trans Pattern Anal Mach Intell 19(7):780–785, JulyCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Pedro Correa
    • 1
    Email author
  • Ferran Marqués
    • 2
  • Xavier Marichal
    • 3
  • Benoit Macq
    • 1
  1. 1.Lab. de Télécommunications et TélédétectionUniversité Catholique de Louvain (UCL)Louvain-la-NeuveBelgium
  2. 2.Image Processing GroupTechnical University of Catalonia (UPC)BarcelonaSpain
  3. 3.Alterface S.A.Louvain-la-NeuveBelgium

Personalised recommendations