Multimedia Tools and Applications

, Volume 33, Issue 3, pp 245–272 | Cite as

Optimization of media processing workflows with adaptive operator behaviors

  • Lina Peng
  • K. Selçuk Candan
  • Christopher Mayer
  • Karamvir S. Chatha
  • Kyung Dong Ryu


In this paper, we present the ARIA media processing workflow architecture that processes, filters, and fuses sensory inputs and actuates responses in real-time. The components of the architecture are programmable and adaptable; i.e. the delay, size, and quality/precision characteristics of the individual operators can be controlled via a number of parameters. Each data object processed by qStream components is subject to transformations based on the parameter values. For instance, the quality of an output data object and the corresponding processing delay and resource usage depend on the values assigned to parameters of the operators in the object flow path. In Candan, Peng, Ryu, Chatha, Mayer (Efficient stream routing in quality- and resource-adaptive flow architectures. In: Workshop on multimedia information systems, 2004), we introduced a class of flow optimization problems that promote creation and delivery of small delay or small resource-usage objects to the actuators in single-sensor, single-actuator workflows. In this paper, we extend our attention to multi-sensor media processing workflow scenarios. The algorithms we present take into account the implicit dependencies between various system parameters, such as resource consumption and object sizes. We experimentally show the effectiveness and efficiency of the algorithms.


Media-processing workflows Sensory/reactive environments Quality-cost tradeoff Quality-delay tradeoff Interactive arts 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Babu S, Widom J (2001) Continuous queries over data streams. SIGMOD Rec 30(3):109–120, SeptemberCrossRefGoogle Scholar
  2. 2.
    Babu S, et al (2004) Adaptive ordering of pipelined stream filters. In: Proceedings of the 2004 ACM SIGMOD international conference on management of data, Paris, France, pp 407–418Google Scholar
  3. 3.
    Black A, Huang J, Koster R, Walpole J, Pu C (2002) Infopipes: an abstraction for multimedia streaming. Multimedia Syst 8:406–419CrossRefGoogle Scholar
  4. 4.
    Bom J, Marques P, Correia M, Pinto P (1998) An architecture for dynamic multimedia QoS control. In: 7th IFIP/ICCC conf. on information networks and data communications, Aveiro, JuneGoogle Scholar
  5. 5.
    Candan KS, Peng L, Ryu KD, Chatha KS, Mayer C (2004) Efficient stream routing in quality- and resource-adaptive flow architectures. In: Workshop on multimedia information systemsGoogle Scholar
  6. 6.
    Candan KS, Yang Y (1999) Least-cost high-quality object retrieval for distributed multimedia collaborations ICMCS99Google Scholar
  7. 7.
    Candan KS et al (1998) Collaborative multimedia systems: synthesis of media objects. IEEE TKDE, 10(3): 433–457, May–JuneGoogle Scholar
  8. 8.
    Chang F, Karamcheti V (2001) A framework for automatic adaptation of tunable distributed applications. Cluster Comput 4(1), MayGoogle Scholar
  9. 9.
    Chatterjee S (1999) Dynamic application structuring on heterogeneous, distributed systems. In: Proc. IPPS/SPDP’99, WPDRTS99Google Scholar
  10. 10.
    Fu X, Shi W, Akkerman A, Karamcheti V (2001) CANS: Composable, Adaptive Network Services infrastructure. In: Proceedings of USENIX Symposium on Internet Technologies and Systems (USITS), MarchGoogle Scholar
  11. 11.
    Gu X, Nahrstedt K (2005) Distributed Multimedia Service Composition with Statistical QoS Assurances. IEEE Transactions on MultimediaGoogle Scholar
  12. 12.
    Hellerstein, JM et al (2000) Adaptive Query Processing: Technology in Evolution. IEEE Data Eng Bltn 23(2): 7–18Google Scholar
  13. 13.
    Keleher P, Hollingsworth J, Perkovic D (1999) Exploiting application alternatives. In: Proc. 19th intl. conf. on dist. computing systemsGoogle Scholar
  14. 14.
    Korkmaz T, Krunz M (2001) Multi-constrained optimal path selection. INFOCOMGoogle Scholar
  15. 15.
    Lee C, Lehoczky J, Rajkumar R, Siewiorek D (1999) On quality of service optimization with discrete QoS options. In: IEEE Real Time Technology and Applications Symp. 276Google Scholar
  16. 16.
    Lorenz DH, Orda A (1998) QoS routing in networks with uncertain parameters. In: INFOCOM98Google Scholar
  17. 17.
    Madden S, Franklin MJ (2002) Fjording the stream: an architecture for queries over streaming sensor data. In: ICDE 2002Google Scholar
  18. 18.
    Nahrstedt K, Smith JM (1995) The QOS broker. IEEE MultiMed 2(1):53–67CrossRefGoogle Scholar
  19. 19.
    Peng L, Candan KS Adaptive multi-sensor, multi-actuator media workflow system for interactive arts. In: Workshop on managing data for Emerging Multimedia Applications (EMMA05)Google Scholar
  20. 20.
    Peng L, Candan KS, Ryu KD, Chatha KS, Sundaram H (2004) ARIA: an adaptive and programmable media-flow architecture for interactive arts. In: ACM MM Interactive Arts ProgramGoogle Scholar
  21. 21.
    Raman B, Katz RH (2003a) An architecture for highly available wide-area service composition. Computer Communication Journal 26(15):1727–1740, SeptemberCrossRefGoogle Scholar
  22. 22.
    Raman B, Katz RH (2003b) Load balancing and stability issues in algorithms for service composition. IEEE INFOCOMGoogle Scholar
  23. 23.
    Sen A et al (2000) On shortest path problems with “non-Markovian” link contribution to path lengths. NETWORKING 2000, pp 859–870Google Scholar
  24. 24.
    Siachalou S, Georgiadis L (2003) Efficient QoS routing. INFOCOMGoogle Scholar
  25. 25.
    Tatbul N et al. (2003) Load shedding in a data stream manager. VLDBGoogle Scholar
  26. 26.
    Tian F, DeWitt D (2003) Tuple routing strategies for distributed eddies. VLDBGoogle Scholar
  27. 27.
    Wang Z, Crowcroft J (September 1996) Quality of service routing for supporting multimedia applications. IEEE JSAC 14(7)Google Scholar
  28. 28.
    Wang N, Pavlou G (2003) DQM : an overlay scheme for quality of service differentiation in source specific multicast. In: workshop on quality of service in multiservice IP networks, pp 306–319Google Scholar
  29. 29.
    Xu D, Nahrstedt K (2002) Finding services paths in a media service proxy network. In: Proc. of SPIE/ACM MMCNGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Lina Peng
    • 1
  • K. Selçuk Candan
    • 1
  • Christopher Mayer
    • 1
  • Karamvir S. Chatha
    • 1
  • Kyung Dong Ryu
    • 2
  1. 1.Computer Science and Engineering DepartmentIra A. Fulton School of Engineering, Arizona State UniversityTempeUSA
  2. 2.IBM T.J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations