Multimedia Tools and Applications

, Volume 29, Issue 1, pp 73–89 | Cite as

A structure-based approach for multimedia information filtering

  • Dianhui Wang
  • Xiaodi Huang
  • Yong-soo Kim
  • Joon Shik Lim
  • Myung-mook Han
  • Byung-wook Lee


While multimedia documents are sequentially presented to users, an information filtering (IF) system is useful to achieve a good retrieval performance in terms of both quality and efficiency. Conventional approaches for designing an IF system are based on the user's evaluation on information relevance degree (IRD), but ignore other attributes in system design such as relative importance of the data in a collection of multimedia documents. In this paper, we aim at developing a framework of designing structure-based multimedia IF systems, which incorporates the characteristics of the importance and relevance of multimedia documents. A method of calculating the values of relative importance degree of multimedia documents is proposed. Furthermore, these values are combined into the IRD of multimedia documents to improve the representation of user profiles. An illustrative example is given to demonstrate the proposed techniques.


Multimedia documents Display algorithms Search and retrieval Information filtering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belkin NJ, Croft WB (1992) Information filtering and information retrieval two sides of the same coin? Commun ACM 35(12):29–38CrossRefGoogle Scholar
  2. 2.
    Freeman LC (1978) Centrality in social networks. I. Conceptual clarification. Social networks. Cambridge University Press 1:215–239Google Scholar
  3. 3.
    Hanani U, Shapira B, Shoval P (2001) Information filtering: overview of issues, research and systems. User Model User-Adapt Interact 11:203–259CrossRefGoogle Scholar
  4. 4.
    Kleinberg J (1998) Authoritative sources in a hyperlinked environment, Proc. 9th ACM-SIAM Symposium on Discrete AlgorithmsGoogle Scholar
  5. 5.
    Linda S (1994) Relevance and information behaviour. Annual Review Information Science Technology (ARIST) 29:3–48Google Scholar
  6. 6.
    Malone TW (1987) Intelligent information-sharing systems. Commun ACM 30(5):390–402CrossRefGoogle Scholar
  7. 7.
    Malone TW, Grant KR, Rao R (1987) Semi structured messages are surprisingly useful for computer-supported coordination. ACM Trans Off Inf Syst 5(2):115–131CrossRefGoogle Scholar
  8. 8.
    Mostafa J, Mukhopadhyay S, Palakal M, Lamw (1997) A multilevel approach to intelligent information filtering: model, system, and evaluation. ACM Trans Inf Sys 15(4):368–399CrossRefGoogle Scholar
  9. 9.
    Oard WD (1997) The state of the art in text filtering. User Model User-Adapt Interact (UMUAI) 7(3):141–178CrossRefGoogle Scholar
  10. 10.
    Page L, Brin S, Motwani R, Winograd T (1998) The pagerank citation ranking: bringing order to the web, Stanford Digital Library Technologies ProjectGoogle Scholar
  11. 11.
    Robertson SF (1977) The probability ranking principle. Journal of Multimedia Documentation 294–304Google Scholar
  12. 12.
    Rocchio J (1971) Relevance feedback in information retrieval. 313–323Google Scholar
  13. 13.
    Scott, J (2000) Social network analysis: a handbook. Sage, LondonGoogle Scholar
  14. 14.
    Wasserman S, Katherine F (1994) Social network analysis: methods and applicationsGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Dianhui Wang
    • 1
    • 3
  • Xiaodi Huang
    • 2
  • Yong-soo Kim
    • 3
  • Joon Shik Lim
    • 3
  • Myung-mook Han
    • 3
  • Byung-wook Lee
    • 3
  1. 1.Department of Computer Science and Computer EngineeringLa Trobe UniversityMelbourneAustralia
  2. 2.School of Mathematics, Statistics and Computer ScienceThe University of New EnglandArmidaleAustralia
  3. 3.Software CollegeKyungwon UniversitySeongnam, Gyeonggi-DoSouth Korea

Personalised recommendations