Multimedia Tools and Applications

, Volume 34, Issue 2, pp 155–177 | Cite as

Transmission of layered video streaming via multi-path on ad hoc networks

  • Meng-Yen Hsieh
  • Yueh-Min HuangEmail author
  • Tzu-Chinag Chiang


Mobile ad hoc networks without centralized infrastructure change their topology rapidly because of node mobility, making multimedia applications difficult to run across wireless networks. Moreover, video transmission over ad hoc networks causes frequent transmission loss of video packets owing to end-to-end transmission with a number of wireless links, and requires essential bandwidth and restricted delay to provide quality-guaranteed display. This paper presents an architecture supporting transmission of multiple video streams in ad hoc networks by establishing multiple routing paths to provide extra video coding and transport schemes. This study also proposes an on-demand multicast routing protocol to transport layered video streams. The multicast routing protocol transmits layered video streaming based on a weight criterion, which is derived according to the number of receivers, delay and expiration time of a route. A simulation is performed herein to indicate the viability and performance of the proposed approach. The simulation results demonstrate that the proposed transport scheme is more effective than other video transport schemes with single or multiple paths.


Quality of service Multicast routing Layered video streaming Ad hoc networks Multipath 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Apostopoulos JG, Tan WT, Wee SJ (2002) Video streaming: concepts, algorithms and systems. Technical report, Hewlett-Packard LabsGoogle Scholar
  2. 2.
    Broch J, Maltz DA, Johnson DB, Hu YC, Jetcheva J (1998) A performance comparison of multi-hop wireless ad hoc network routing protocol. ACM MobiCom, pp 85–97Google Scholar
  3. 3.
    Carvalho M, Aceves JJGL (2004) A scalable model for channel access protocols in multihop ad hoc networks. MobiComGoogle Scholar
  4. 4.
    Chakareski J, Han S, Girod B (2003) Layered coding vs. multiple descriptions for video streaming over multiple paths. ACM multimedia (November)Google Scholar
  5. 5.
    Chiang C-C, Gerla M, Zhang L (1998) Forwarding group multicast protocol (FGMP) for multihop, mobile wireless networks. Cluster Comput, 187–196Google Scholar
  6. 6.
    Choi W, Das SK (2002) A proxy based indirect routing scheme for ad hoc wireless networks. INFOCOM 2002, Proceedings. IEEE, pp 1395–1404Google Scholar
  7. 7.
    Cox RV, Kroon P (1996) Low bit-rate speech coders for multimedia communication. IEEE Commun Mag 34(12):34–41 (Dec)CrossRefGoogle Scholar
  8. 8.
    Ding JW, Huang YM (2003) Resource-based striping: an efficient striping strategy for video servers using heterogeneous disk-subsystems. Multimedia Tools and Applications 19(1):29–51 (Jan)CrossRefGoogle Scholar
  9. 9.
    Ding JW, Huang YM (2003) Packet permutation: a robust transmission technique for continuous media streaming over the internet. Multimedia Tools and Applications 21(3):281–305 (Dec)CrossRefGoogle Scholar
  10. 10.
    Ding JW, Huang YM, Chu CC (2001) An end-to-end delivery scheme for robust video streaming. Lect Notes Comput Sci 2195:375–382Google Scholar
  11. 11.
    Ghanbari M (1989) Two-layer coding of video signals for VBR networks. IEEE J Sel Areas Commun 7:801–806 (June)CrossRefGoogle Scholar
  12. 12.
    Goyal V (2001) Multiple description coding: compression meets the network. IEEE Signal Process Mag 18:74–93CrossRefGoogle Scholar
  13. 13.
    Huang YM, Ding JW, Tsao SL (1999) Constant time permutation: an efficient block allocation strategy for variable bit rate continuous media. VLDB J 8(1):44–54CrossRefGoogle Scholar
  14. 14.
    Huang YM, Tsao SL (1997) An efficient data placement and retrieval scheme of zoned-disks to support interactive playout for video servers. IEEE Trans Consum Electron 43(1):69–79 (Feb)CrossRefGoogle Scholar
  15. 15.
    Jetcheva J, Johnson D (2001) Adaptive demand-driven multicast routing in multi-hop wireless ad hoc networks. ACM MobihocGoogle Scholar
  16. 16.
    Johnson D, Maltz D (1998) The dynamic source routing protocol for mobile ad hoc networks., 1998. IETF Internet Draft
  17. 17.
    Kansari M et al (1996) Low bit rate video transmission over fading channels for wireless microcellular systems. IEEE Trans, CAS for Video TechGoogle Scholar
  18. 18.
    Ke CH, Shieh CK, Hwang WS, Ziviani A (2005) A Two Markers System for Improved MPEG Video Delivery in a DiffServ Network. IEEE Commun Lett, IEEE, 9:381–383Google Scholar
  19. 19.
    Khansari M, Jalali A, Dubois E, Mermelstein P (1996) Low bit-rate video transmission over fading channels for wireless microcellular system. IEEE Trans Circuits Syst Video Technol 6:1–11CrossRefGoogle Scholar
  20. 20.
    Kim S, Ahn SJ, Chung JW (2004) Distributed multi-path searching algorithm for defualt detection. Lect Notes Comput Sci 2668:664–673, FebCrossRefGoogle Scholar
  21. 21.
    Lee S-J, Gerla M (2001) Split multipath routing with maximally disjoint paths in ad hoc networks. In: Proc. IEEE ICC, Helsinki, Finland, pp 3201–3205Google Scholar
  22. 22.
    Lee SJ, Gerla M, Chiang C-C (1999) On-demand multicast routing protocol. In: Proc. of IEEE WCNC’99, New Orleans, LA (Sep)Google Scholar
  23. 23.
    Lee S, Gerla M, Chiang C (1999) On-demand multicast routing protocol. In: Proc. of IEEE WCNC’99, New Orleans, LA, pp 1298–1302Google Scholar
  24. 24.
    Lee JY, Kim TH, Ko SJ (1998) Motion prediction based on temporal layering for layered video coding. Proc. of ITCCSCC ’98, Sokcho, Korea, pp 245–248Google Scholar
  25. 25.
    Lee SJ, Su W, Gerla M (2001) Wireless ad hoc multicast routing with mobility prediction. MONET, pp 351–360Google Scholar
  26. 26.
    Lee S-J, Su W, Gerla M (2000) Exploiting the Unicast Functionality of the On-Demand Multicast Routing Protocol. Procedings of IEEE WCNC 2000, Chicago, IL, SepGoogle Scholar
  27. 27.
    Lee SJ, Su W, Hsu J, Gerla M, Bagrodia R (2000) A Performance Comparison Study of Ad Hoc Wireless Multicast Protocols. INFOCOMGoogle Scholar
  28. 28.
    Mao S, Cheng X, Thomas Y (2004) Multiple description video multicast in wireless ad hoc networks. Broadband Netw, 671–680Google Scholar
  29. 29.
    Mao S, Lin S, Wang Y, Panwar S (2001) Reliable transmission of video over ad hoc networks using automatic repeat request and multipath transport, Vehicular Technology Conference, pp 615–619Google Scholar
  30. 30.
    Nasipuri A, Castañeda R, Das SR (2001) Performance of multipath routing for on-demand protocols in mobile ad hoc networks. Mob Netw Appl 6:339–349zbMATHCrossRefGoogle Scholar
  31. 31.
    NS-2: network simulator.
  32. 32.
    Ogier R, Shacham N (1989) A distributed algorithm for finding shortest pairs of disjoint paths. In: Proc. IEEE INFOCOMGoogle Scholar
  33. 33.
    Papadimitratos P, Haas ZJ, Sirer EG (2002) Path set selection in mobile ad hoc networks. In: Proc. ACM MOBIHOC, Lausanne, Switzerland, pp 1–11Google Scholar
  34. 34.
    Perkins C, Royer E (1999) Ad hoc on-demand distance vector routing. In: Proc. of the 2nd IEEE Workshop on Mobile Computing Systems and Applications, pp 90–100Google Scholar
  35. 35.
    Ramanathan R, Redi J (2002) A brief overview of ad hoc networks: challenges and directions. IEEE Commun MagGoogle Scholar
  36. 36.
    Rijkse K, KPN Research (1996) H.263: video coding for low-bit-rate communication. IEEE Commun Mag, 42–45Google Scholar
  37. 37.
    Sidhu D, Nair R, Abdallah S (1991) Finding disjoint paths in networks. In: Proc. ACM IGCOMM, Zurich, Switzerland, pp 43–51Google Scholar
  38. 38.
    Su W, Lee SJ, Gerla M (2002) Mobility prediction and routing in ad hoc networks. Int J Netw ManageGoogle Scholar
  39. 39.
    Surballe JW (1974) Disjoint paths in a network. Networks, 125–145Google Scholar
  40. 40.
    Surballe JW, Tarjan RE (1984) A quick method of finding shortest pairs of disjoint paths. NetworksGoogle Scholar
  41. 41.
    Toh C, Guichala G, Bunchua S (2000) ABAM: On-Demand Associativity-Based Multicast Routing for Ad Hoc Mobile Networks. In: Proceedings of IEEE Vehicular Technology Conference, pp 987–993Google Scholar
  42. 42.
    Tsao SL, Huang YM (1998) An efficient storage server for near video-on-demand systems. IEEE Trans Consum Electron 44(1):27–32, FebCrossRefGoogle Scholar
  43. 43.
    Tsao SL, Huang YM (1998) Making a cost-effective storage server for broadcasting digital video services. IEEE Trans Broadcast 44(3):300–308, SeptCrossRefGoogle Scholar
  44. 44.
    Tsuchiya PF (1987) The Landmark hierarchy: description and analysis, the landmark routing: architecture algorithms and issues. The MITRE Corporation, McLean, VA, Tech. Rep. MTR-87W00152, MTR-87W00174Google Scholar
  45. 45.
    Wang Y, Panwar S, Lin S, Mao S (2002) Video Transport over Ad-hoc Networks Using Multiple Paths, invited Paper in Proc. of the 2002 IEEE International Symposium on Circuit and SystemsGoogle Scholar
  46. 46.
    Wei W, Zakhor (2004) Multipath unicast and multicast video communication over wireless ad hoc networks. In: Proc. Broadband Networks, pp 496–505Google Scholar
  47. 47.
    Wu C, Tay Y (1999) AMRIS: A multicast protocol for ad hoc wireless networks. In: Military Communications Conference Proceedings, pp 25–29Google Scholar
  48. 48.
    Wu CW, Tay YC, Toh C-K (1998) Ad Hoc Multicast Routing Protocol Utilizing Increasing id-numberS [AMRIS] Functional Specification. Internet draft, NovGoogle Scholar
  49. 49.
    Xie J, Talpade R et al (2002) AMRoute: ad hoc multicast routing protocol. Mob Netw Appl 7:429–439CrossRefGoogle Scholar
  50. 50.
    Yi Y, Lee SJ, Su W, Gerla M (2003) On-Demand Multicast Routing Protocol (ODMRP) for ad hoc networks. Internet draft, draft-ietf-manet-odmrp-04.txt (Febuary 2003)Google Scholar
  51. 51.

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Meng-Yen Hsieh
    • 1
  • Yueh-Min Huang
    • 1
    Email author
  • Tzu-Chinag Chiang
    • 1
  1. 1.Department of Engineering ScienceNational Cheng-Kung UniversityTainanRepublic of China

Personalised recommendations