Evolution of the Fine Structure of High-Strength Magnesium Alloy under the Effect of Deformation Process Parameters

Results of a study of the fine structure of an alloy of the Mg – Zn – Zr – REE system proving the presence of nanosize plates of self-organizing LPSO-phases after deformation are presented. The Zn and Y hardening elements are redistributed in the periodic rows of the LPSO phases under the effect of the deformation process parameters. The optimum deformation mode of the new alloy provides formation of periodic rows in plates of LPSO phases bearing (3.2 – 4.3) at.% Y and (3.8 – 4.2) at.% Zn.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Notes

  1. 1.

    We acknowledge the participation of P. N. Medvedev, I. V. Mostyaev, and M. V. Anikin

References

  1. 1.

    E. N. Kablov, “Innovative developments of FGUP “VIAM” GNTs RF on implementation of “Strategic Directions of Development of Materials and Processes of their Recycling for up to 2030,” Aviats. Mater. Tekhnol., No. 1(34), 3 – 33 (2015) (https://doi.org/10.18577/2071-9140-2015-0-1-3-33).

  2. 2.

    E. N. Kablov, “Aircraft and spacecraft materials science,” in: All Materials. Encyclopedic Manual [in Russian], Moscow (2008), V. 3, pp. 2 – 14.

  3. 3.

    E. N. Kablov, “Science as a branch of economy,” Nauka i Zhizn’, No. 10, 7 – 8 (2009).

  4. 4.

    I. S. Kornysheva, E. F. Volkova, E. S. Goncharenko, et al., “Prospects of application of magnesium and castable aluminum alloys,” Aviats. Mater. Tekhnol., No. S, 212 – 222 (2012).

  5. 5.

    E. F. Volkova, I. V. Mostyaev, and M. V. Anikina, “Ways for raising the main mechanical characteristics of magnesium deformable alloys,” Trudy VIAM, No. 10(58), Art. 05 (2017); URL: http://www.viam-works.ru (access date: 14.08.2018). https://doi.org/10.18577/2307-6046-2017-0-10-2-2.

  6. 6.

    E. N. Kablov, O. G. Ospennikova, and A. K. Vershkov, “Rare metals and rare earth elements—materials for recent and future advanced technologies,” Trudy VIAM, No. 2, Art. 01 (2013); URL: http://www.viam-works.ru (access date: 02.08.2018).

  7. 7.

    Yishihito Kawamura and Michiaki Yamasaki, “Formation and mechanical properties of Mg97ZnRE2 alloys with long-period stacking ordered structure,” Mater. Trans., 48(11), 2986 – 2992 (2007).

    CAS  Article  Google Scholar 

  8. 8.

    K. Hagihara, A. Kinoshita, Y. Sugino, et al., “Effect of long-period stacking ordered phase on mechanical properties of Mg97ZnY2 extruded alloy,” Acta Mater., 58, 6282 – 6293 (2010).

    CAS  Article  Google Scholar 

  9. 9.

    K. Hagihara, A. Kinoshita, Y. Fukusumi, et al., “High temperature compressive deformation behavior of Mg97ZnY2 extruded alloy containing a long period stacking ordered (LPSO) phase,” Mater. Sci. Eng. A, 560, 71 – 79 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    K. Hagihara, N. Yokotani, and T. Umakoshi, “Plastic deformation behavior of Mg12YZn with 18R long-period stacking ordered structure,” Intermetallics, 18, 267 – 276 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    M. Noda, R. Matsumoto, and Y. Kawamura, “Forging induces changes in the formability and microstructure of extruded Mg96Zn2Y2 alloy with long-period stacking order phase,” Mater. Sci. Eng. A, 563, 21 – 27 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    E. Abe, A. Ono, T. Itoi at al., “Polytypes of long-period stacking structures synchronized with chemical order in a dilute Mg – Zn – Y alloy,” Philos. Mag. Lett., 91(10), 690 – 696 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    E. N. Kablov, V. V. Antipov, E. F. Volkova, O. M. Chekalin, and M. V. Anikina, “Magnesium-base alloy and article manufactured from it, Patent 2554269 RF, appl. No. 2014107964 of 03.03.2014, reg. May 27, 2015,” Byull. Izobr. Polezn. Modeli, No. 18 (2015), publ. June 15, 2015.

  14. 14.

    E. F. Volkova, V. V. Antipov, and A. V. Zavodov, “Astudy of the fine structure and phase composition of magnesium alloy VMD16 in cast and homogenized conditions,” Metalloved. Term. Obrab. Met., No. 3, 3 – 8 (2019).

  15. 15.

    V. N. Serebryanyi, M. A. Khar’kova, E. A. Luk’yanova, and F. R. Karelin, “Texture, structure, mechanical properties and deformability of rolled sheets from magnesium alloy MA2-1 subjected primarily to direct and equal-channel angular pressing and annealing,” Metally, No. 3, 39 – 48 (2018).

  16. 16.

    E. I. Razuvaev, D. Yu. Lebedev, and M. V. Bubnov, “Formation of ultrafine-grained and nanosize structure in metals and alloys by deformation techniques,” Aviats. Mater. Tekhnol., No. 3, 3 – 8 (2010).

  17. 17.

    Phase Diagrams of Binary Metallic Systems, A Manual [in Russian] (2001), Vol. 3, Book 1, p. 294.

  18. 18.

    L. L. Rokhlin, Magnesium Alloys Containing Rare Earth Metals [in Russian], Nauka, Moscow (1980), 192 p.

  19. 19.

    Phase Diagrams of Aluminum- and Magnesium-Base Systems, A Manual [in Russian], Nauka, Moscow (1977), pp. 138 – 139.

  20. 20.

    L. L. Rokhlin, “Structure and properties of alloys of the Mg – REM system,” Metalloved. Term. Obrab. Met., No. 11, 18 – 22 (2006).

  21. 21.

    Phase Diagrams of Binary Metallic Systems, A Manual [in Russian], Mashinostroenie, Moscow (2001), Vol. 3, Book 1, pp. 201 – 204.

  22. 22.

    Z. A. Sviderskaya and L. L. Rokhlin, Neodymium-Containing Magnesium Alloys [in Russian], Nauka, Moscow (1965), pp. 13 – 16.

  23. 23.

    M. B. Altman, M. E. Drits, I. I. Gur’eva, et al. (eds.), Magnesium Alloys. A Manual [in Russian], Metallurgiya, Moscow (1078), Vol. 1, 232 p.

  24. 24.

    E. F. Volkova, I. V. Mostyaev, and M. V. Anikina, “Comparative analysis of anisotropy of mechanical properties in microstructure of deformed semiproducts from high-strength magnesium alloys with REE,” Trudy VIAM, No. 5(65), Art. 04 (2018); URL: http://www.viam-works.ru (access date: 07.08.2018). https://doi.org/10.18577/2307-6046-2018-0-5-24-33.

Download references

The work has been performed within implementation of Scientific Direction 8.4 “High-Strength Corrosion-Resistant Weldable Magnesium Alloys and Castable Aluminum Alloys for New-Generation Articles for Aerospace Engineering” (Strategic Directions of Development of Materials and Processes of their Recycling for up to 2030 [1]).

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. F. Volkova.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 10, pp. 25 – 33, October, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Volkova, E.F., Duyunova, V.A., Filonova, E.V. et al. Evolution of the Fine Structure of High-Strength Magnesium Alloy under the Effect of Deformation Process Parameters. Met Sci Heat Treat 62, 622–629 (2021). https://doi.org/10.1007/s11041-021-00614-8

Download citation

Key words

  • fine structure of magnesium alloy
  • self-organizing LPSO-phases
  • deformation process parameters
  • redistribution of Zn and Y hardening elements