Formation of Microstructure in Advanced Low-Carbon Steel of Martensitic Class Under Heat Treatment

Ametallographic study of advanced low-carbon martensitic steel with high resistance of the supercooled austenite to the transformations by pearlitic and bainitic mechanisms under continuous cooling is performed. The critical temperatures of the transformations occurring under heating and cooling are determined. The kinetics of the isothermal transformation of the austenite in the temperature range of 300 – 400°C is analyzed. The possibility of successful implementation of isothermal quenching of the steel after carburizing is demonstrated.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.


  1. 1.

    The authors acknowledge the help of M. A. Ryzhkov and A. Yu. Kaletin in the metallographic and dilatometric studies.


  1. 1.

    J. Fajoui, M. Kchaou, A. Sellami, et al., “Impact of residual stresses on mechanical behavior of hot work steels,” Eng. Failure Anal., 94, 33 – 40 (2018).

    Article  Google Scholar 

  2. 2.

    A. K. Nallathambi, Y. Kaymak, E. Specht, and A. Bertram, “Sensitivity of material properties on distortion and residual stresses during metal quenching processes,” J. Mater. Proc. Technol., 210(2), 204 – 211 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    M. V. Maisuradze, Yu. V. Yudin, and M. A. Ryzhkov, “Investigation and development of spray cooling device for heat treatment of large steel forgings,” Mater. Perform. Character., 3(4), 449 – 462 (2014).

    Google Scholar 

  4. 4.

    M. V. Maisuradze, M. A. Ryzhkov, Yu. V. Yudin, and A. A. Ershov, “Heat treatment technology for high-strength engineering steel variable cross-section components,” Metallurgist, 58(7 – 8), 712 – 716 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    L. E. Popova and A. A. Popov, Diagrams of Austenite Transformation in Steels and of Beta-Solution in Titanium Alloys [in Russian], Metallurgiya, Moscow (1991), 503 p.

    Google Scholar 

  6. 6.

    L. M. Kleiner, D. M. Larinin, L. V. Spivak, and A. A. Shatsov, “Phase and structural transformations in low-carbon martensitic steels,” Phys. Met. Metallogr., 108(2), 153 – 160 (2009).

    Article  Google Scholar 

  7. 7.

    V. A. Kozvonin, A. A. Shatsov, I. V. Ryaposov, et al., “Structure, phase transformations, mechanical characteristics, and cold resistance of low-carbon martensitic steels,” Phys. Met. Metallogr., 117(8), 834 – 842 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    D. M. Larinin, L. M. Kleiner, and A. A. Shatsov, “Structural strength of low-carbon martensitic steel 12Kh2G2NMFB,” Metal Sci. Heat Treat., 52, 545 – 549 (2011).

    CAS  Google Scholar 

  9. 9.

    S. K. Berezin, A. A. Shatsov, P. O. Bykova, and D. M. Larinin, “Martensitic transformation in low-carbon steels,” Metal Sci. Heat Treat., 59(7 – 8), 479 – 485 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    J. G. Speer, “Phase transformations in quenched and partitioned steels,” in: E. Pereloma and D. V. Edmonds (eds.), Phase Transformations in Steels, Woodhead Publishing Ltd., Cambridge (2012), pp. 247 – 270.

    Google Scholar 

  11. 11.

    S. Kang, K. Kim, Y. Son, and S.-J. Lee, “Application of the quenching and partitioning (Q&P) process to D6AC steel,” ISIJ Int., 56, 2057 – 2061 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    J. G. Speer, E. De Moor, and A. J. Clarke, “Critical assessment 7: Quenching and partitioning,” Mater. Sci. Technol., 31, 3 – 9 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    M. A. Ryzhkov and A. A. Popov, “Methodological aspects of plotting of thermokinetic diagrams of transformation of supercooled austenite in low-alloy steels,” Metal Sci. Heat Treat., 52(11 – 12), 612 – 616 (2011).

    CAS  Google Scholar 

  14. 14.

    T. A. Kop, J. Sietsma, and S. Van Der Zwaag, “Dilatometric analysis of phase transformations in hypo-eutectoid steels,” J. Mater. Sci., 36, 519 – 526 (2001).

    CAS  Article  Google Scholar 

  15. 15.

    M. V. Maisuradze, Yu. V. Yudin, and M. A. Ryzhkov, “Numerical simulation of pearlitic transformation in steel 45Kh5MF,” Metal Sci. Heat Treat., 56, 512 – 516 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    Yu. V. Yudin, M. V. Maisuradze, and A. A. Kuklina, “Describing the isothermal bainitic transformation in structural steels by a logistical function,” Steel in Trans., 47(3), 213 – 218 (2017).

    Article  Google Scholar 

  17. 17.

    M. V. Maisuradze, Yu. V. Yudin, and A. A. Kuklina, “Novel approach for analytical description of the isothermal bainite transformation in alloyed steels,” Mater. Perform. Charact., 8(2), 80 – 95 (2019).

    Google Scholar 

  18. 18.

    G. Gao, H. Zhang, Z. Tan, et al., “A carbide-free bainite/martensite/austenite triplex steel with enhanced mechanical properties treated by a novel quenching-partitioning-tempering process,” Mater. Sci. Eng. A, 59, 165 – 169 (2013).

    Article  Google Scholar 

  19. 19.

    H. Zhang, D. Ponge, and D. Raabe, “Superplastic Mn – Si – Cr – C duplex and triplex steels: Interaction of microstructures and void formation,” Mater. Sci. Eng. A, 610, 355 – 369 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    H. Guo, G. Gao, X. Gui, et al., “Structure-property relation in a quenched-partitioned low alloy steel involving bainite transformation,” Mater. Sci. Eng. A, 667, 224 – 231 (2016).

    CAS  Article  Google Scholar 

Download references

The work has been performed with support of the program for raising the competitiveness of the Ural Federal University.

Author information



Corresponding author

Correspondence to M. V. Maisuradze.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 9, pp. 9 – 16, September, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maisuradze, M.V., Yudin, Y.V. & Kuklina, A.A. Formation of Microstructure in Advanced Low-Carbon Steel of Martensitic Class Under Heat Treatment. Met Sci Heat Treat 62, 550–556 (2021).

Download citation

Key words

  • steel
  • heat treatment
  • dilatometry
  • microstructure
  • isothermal quenching
  • carburizing
  • retained austenite