Mechanical Properties and Structure of Titanium-Alloy Overlays Alloyed With Oxygen from the Oxide Layer of Filler Rods

Prospects of oxygen alloying of alloys in the process of deposition of rods on parts from titanium alloys aimed at raising their hardness are considered. Experiments on fabrication of samples of titanium alloys with remelting of filler rods with oxide coating formed by plasma electrolytic oxidation are performed. The main mechanical characteristics of the overlay rod material modified by introduction of oxygen from the oxide layer are determined and the structural features of the material are analyzed.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.

References

  1. 1.

    Y. Bellouard, “Shape memory alloys for microsystems: A review from a material research perspective,” Mater. Sci. Eng., 481 – 482, 582 – 589 (2008).

    Article  Google Scholar 

  2. 2.

    J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, “A review of shape memory alloy research, applications and opportunities,” Mater. Des., 56, 1078 – 1113 (2014).

    Article  Google Scholar 

  3. 3.

    S. H. Chang, S. K. Wu, and L. M. Wu, “Shape memory characteristics of as-spun and annealed Ti51Ni49 crystalline ribbons,” Intermetallics, 18, 965 – 971 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    B. Faure, G. Salazar-Alvarez, and L. Berestrom, “Hamaker constants of iron oxide nanoparticles,” Langmuir, 27, 8659 – 8664 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    I. S. Fatiev, V. K. Shatalov, V. I. Mikhailov, et al., “Properties of antifriction claddings on titanium alloys with oxidized filler rods,” Naukoemk. Tekhnol., No. 7, 35 – 42 (2013).

  6. 6.

    I. V. Gorynin, S. S. Ushakov, A. N. Khatuntsev, and N. I. Loshakova, Titanium Alloys for Marine Engineering [in Russian], Izd. POLITEKHNIKA, St. Petersburg (2007), 274 p.

  7. 7.

    V. P. Leonov, V. I. Mikhailov, A. L. Groshev, et al., “Novel materials for overlays on parts of ship equipment for deepwater transportation systems,” Vopr. Materialoved., No. 1(81), 263 – 268 (2015).

  8. 8.

    B. A. Kolachev, V. I. Elagin, and V. A. Livanov, Metal Science and Heat Treatment of Nonferrous Metals and Alloys [in Russian], MISiS, Moscow (1999), 416 p.

    Google Scholar 

  9. 9.

    A. V. Ovchinnikov, S. I. Davydov, V. G. Shevchenko, et al., “Effect of oxygen alloying of spongy titanium on the structure and mechanical properties of cast titanium,” in: Ti-2007 in the CIS, Proc. Int. Conf. [in Russian], (2007), pp. 170 – 173.

  10. 10.

    I. V. Kozlov, V. I. Mikhailov, V. A. Semenov, et al., “A study of the quality of oxidized titanium alloy PT-7M deposited with the use of high-temperature rolling,” Vopr. Materialoved., 3(51), 214 – 217 (2007).

    Google Scholar 

  11. 11.

    A. D. Ryabtsev, S. I. Davydov, A. A. Troyanskii, et al., “Fabrication of high-strength titanium by oxygen alloying during chamber electroslag remelting,” Sovr. Élektrometall., No. 3, 3 – 6 (2007).

  12. 12.

    I. O. Bykov, A. V. Ovchinnikov, S. I. Davydov, et al., “Use of hydrogenated titanium with specified oxygen content for producing articles by powder metallurgy,” Teor. Prakt. Metall., No. 1 – 2, 65 – 69 (2011).

  13. 13.

    A. D. Ryabtsev, A. A. Troyanskii, O. A. Ryabtseva, et al., “Fabrication of novel titanium-base materials with elevated mechanical characteristics and biological compatibility by oxygen alloying using a chamber electroslag process,” in: Ti-2007 in the CIS, Proc. Int. Conf. [in Russian], (2007), pp. 89 – 93.

  14. 14.

    A. D. Ryabtsev, S. I. Davydov, A. A. Troyanskii, et al., “Fabrication of high-strength titanium by oxygen alloying using a chamber electroslag process,” Sovr. Élektrometall., No. 3, 3 – 6 (2007).

  15. 15.

    I. O. Bykov, A. V. Ovchinnikov, S. I. Davydov, et al., “Application of hydrogenated titanium with specified oxygen content for producing articles by powder metallurgy,” Teor. Prakt. Metall., No. 1 – 2, 65 – 69 (2011).

  16. 16.

    S. M. Gyrevich (ed.), Metallurgy and Welding of Titanium and Its Alloys [in Russian], Naukova Dumka, Kiev (1979), 300 p.

  17. 17.

    S. I. Stel’mashok, I. M. Milyaev, V. S. Yusupov, amd A. I. Milyaev, “Magnetic and mechanical properties of hard magnetic alloys 30Kh21K3M and 30Kh20K2M2V,” Metalloved. Term. Obrab. Met., No. 10, 42 – 48 (2016).

  18. 18.

    A. V. Kudrya, E. A. Sokolovskaya, S. V. Skorodumov, et al., “Opportunities of digital optical microscopy for objective certification of the quality of metal products,” Metalloved. Term. Obrab. Met., No. 4, 15 – 23 (2018).

  19. 19.

    S. Yu. Ivanov, O. V. Panchenko, and V. G. Mikhailov, “Comparative analysis of nonuniformity of mechanical properties of welded joints of Al – Mg – Si alloys formed by friction stir and laser welding,” Metalloved. Term. Obrab. Met., No. 6, 53 – 58 (2018).

  20. 20.

    F. Horn, An Atlas of Structures of Welded Joints [Russian translation], Metallurgiya, Moscow (1977), 288 p.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. K. Shatalov.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 8, pp. 37 – 41, August, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shatalov, V.K., Korzhavyi, A.P. & Lysenko, L.V. Mechanical Properties and Structure of Titanium-Alloy Overlays Alloyed With Oxygen from the Oxide Layer of Filler Rods. Met Sci Heat Treat 62, 524–528 (2020). https://doi.org/10.1007/s11041-020-00596-z

Download citation

Key words

  • titanium alloys
  • rods
  • oxide layer
  • oxygen
  • hardness