Skip to main content

High-Temperature Transformation of Carbides in Skeleton Eutectic and Delta-Eutectoid of Cast High-Speed Steel

Special features of high-temperature transformation of carbides in the eutectic and δ-eutectoid of a cast high-speed steel of type R6M5 are studied. The conditions of formation of a vanadium-enriched carbide during annealing at 1200°C with different holds are considered.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    E. S. Lee, W. J. Park, J. Y. Jung, and S. Ahn, “Solidification microstructure and M2C carbide decomposition in a sprayformed high-speed steel,” Metall. Mater. Trans. A, 29(5), 1395 – 1404 (1998).

    Article  Google Scholar 

  2. 2.

    L. D. Moshkevich, A. N. Kurasov, and N. E. Evlampieva, “Variation of the composition and structure of eutectic carbides under heating of high-speed steels,” Metalloved. Term. Obrab. Met., No. 6, 41 – 44 (1979).

  3. 3.

    Yu. N. Taran, P. F. Nizhnikovskaya, O. N. Grishina, and G. F. Demchenko, “Carbide transformation in cast steel R6M5 under high-temperature treatment,” Metalloved. Term. Obrab. Met., No. 11, 37 – 40 (1976).

  4. 4.

    Y.-W. Luo, H.-J. Guo, X. L. Sun, and J. Guo, “Influence of the nitrogen content on the carbide transformation of AISI M42 high-speed steels during annealing,” Sci. Rep., 8(1), 1 – 9 (2018).

    Article  CAS  Google Scholar 

  5. 5.

    X. F. Zhou, X. Yin, F. Fang, et al., “Influence of rare earths on eutectic carbides in AISI M2 high speed steel,” J. Rare Earth, 30(10), 1075 – 1078 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    X. F. Zhou, F. Fang, J. Q. Jiang, et al., “Study on decomposition behavior of M2C eutectic carbide in high speed steel,” Mater. Sci. Technol., 28(12), 1499 – 1504 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    X. Zhou, F. Fang, G. Li, and J. Jiang, “Morphology and properties of M2C eutectic carbides in AISI M2 steel,” ISIJ Int., 50(8), 1151 – 1157 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    T. K. Ha, E. I. Yang, J. Y. Jung, and S.W. Park, “Effect of alloying elements and homogenization treatment on carbide formation behavior in M2 high-speed steels,” Korean J. Met. Mater., 48(7), 589 – 597 (2010).

    CAS  Google Scholar 

  9. 9.

    H. Fredriksson, M. Hillert, and M. Nica, “The decomposition of the M2C carbide in high-speed steel,” Scand. J. Metall., 8, 11 – 122 (1976).

    Google Scholar 

  10. 10.

    F. S. Pan, W. G. Wang, A. T. Tang, et al., “Phase transformation refinement of coarse primary carbides in M2 high sped steel,” Prog. Nat. Sci.: Mater. Int., 21, 180 – 186 (2011).

    Article  Google Scholar 

  11. 11.

    Z. D. Zhang, W. Liu, D. L. Sun, and Y. G. Li, “The transformation of carbides during austenization and its effect on the wear resistance of high speed steel rolls,” Metall. Mater. Trans. A, 38A(3), 499 – 505 (2007).

    CAS  Article  Google Scholar 

  12. 12.

    A. S. Chaus and J. Porubski, “Effect of heat treatment on the structure of cast high-speed steel of type R6M5 modified with tungsten additives,” Met. Sci. Heat Treat., 55(11–12), 583 – 591 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    A. S. Chaus, M. Bogachik, and P. Uradnik, “Structural transformations during heat treatment of W – Mo cast high-speed steel modified using titanium diboride,” Phys. Met. Metallogr., 112(5), 470 – 479 (2011).

    Article  Google Scholar 

  14. 14.

    L. Jiang, X.-X. Ye, Z.-Q. Wang, et al., “The critical role of Si-doping in enhancing the stability of M6C carbides,” J. Alloys Compd., 728, 917 – 926 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    L. Jiang, W.-Z. Zhang, Z. F. Xu, et al., “M2C and M6C carbide precipitation in Ni – Mo – Cr based superalloys containing silicon,” Mater. Des., 112, 300 – 308 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    Z. Xu, L. Jiang, J. Dong, et al., “The effect of silicon on precipitation and decomposition behaviors of M6C carbide in a Ni – Mo – Cr superalloy,” J. Alloys Compd., 620, 197 – 203 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    H. K. D. H. Bhadeshia and R. W. K. Honeycombe, Steels: Microstructure and Properties, Butterworth-Heinemann (2017), 488 p.

    Google Scholar 

  18. 18.

    M. Boccalini and H. Goldstein, “Solidification of high speed steels,” Int. Mater. Rev., 46(2), 92 – 115 (2001).

    CAS  Article  Google Scholar 

  19. 19.

    H. F. Fishmeister, R. Riedl, and S. Karagoz, “Solidification of high-speed tool steels,” Metall. Trans. A, 20A, 2133 – 2148 (1989).

    Article  Google Scholar 

  20. 20.

    A. Fischer and E. Kohlhaas, “Microstructures of high-speed steels,” Praktische Metallografie, 12, 393 – 406 (1975).

    CAS  Google Scholar 

  21. 21.

    L. S. Kremnev, “From steel R18 to tungsten-free low-alloy high-speed steels,” Metalloved. Term. Obrab. Met., No. 7, 27 – 30, 35 – 43 (1986).

  22. 22.

    M. Murgaš, A. S. Chaus, A. Pokusa, and M. Pokusová, “The electroslag remelting of high-speed steel using a magnetic field,” ISJI Int., 40(10), 980 – 986 (2000).

    Article  Google Scholar 

  23. 23.

    H. Fredriksson and S. Brising, “The formation of carbides during solidification of high-speed steels,” Scand. J. Metall, No. 5, 268 – 275 (1976).

  24. 24.

    H. Fredriksson and M. Nica, “The influence of vanadium, silicon and carbon on the eutectic reaction in M2 high-speed steels,” Scand. J. Metall., No. 8, 243 – 253 (1979).

  25. 25.

    Yu. A. Geller, Tool Steels [in Russian], Metallurgiya, Moscow (1983), 527 p.

    Google Scholar 

  26. 26.

    Yu. N. Taran, P. F. Nizhnikovskaya, L. M. Snagovskii, et al., “Eutectic in a tungsten-molybdenum high-speed steel,” Metalloved. Term. Obrab. Met., No. 10, 46 – 49 (1979).

  27. 27.

    R. D. Mininzon and V. D. Potapov, “Composition of various phases of cast high-speed steels,” in: Production and Investigation of High-Speed and Die Steels [in Russian], Metallurgiya (1970), pp. 37 – 40.

  28. 28.

    Yu. A. Geller and R. D. Mininzon, “The eutectic of high-speed steels,” Stal’, No. 6, 549 – 552 (1970).

  29. 29.

    K. P. Bunin, Ya. N. Malinochka, and Yu. N. Taran, Fundamentals of the Metallography of Cast Iron [in Russian], Moscow (1969), 415 p.

  30. 30.

    X. F. Zhou, F. Fang, F. Li, and J. Q. Jiang, “Morphology and microstructure of M2C carbide formed at different cooling rates in AISI M2 high speed steel,” J. Mater. Sci., 46, 1196 – 1202 (2011).

    CAS  Article  Google Scholar 

  31. 31.

    J. C. Goldschmidt, Interstitial Alloys, Vol. 1 [Russian translation], Mir, Moscow (1971), 424 p.

    Google Scholar 

  32. 32.

    Ya. S. Umanskii and N. T. Chebotarev, Izv. Akad. Nauk SSSR, Ser. Fiz., No. 1, 132 – 134 (1951).

  33. 33.

    A. Westgren and P. Fragmen, J. Trans. AIST, 13(539), 52 – 55 (1928).

  34. 34.

    F. C. Campbell, Elements of Metallurgy and Engineering Alloys, ASM Int., Materials Park, Ohio (2008), 672 p.

    Book  Google Scholar 

  35. 35.

    J. Guo, S. Liu, Y. Zhou, et al., “Stability of eutectic carbide in Fe – Cr – Mo – W – V – C alloy,” Mater. Lett., 171, 216 – 219 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    M. M. Serna and J. L. Rossi, “MC complex carbide in AISI M2 high-speed steel,” Mater. Lett., 63, 691 – 693 (2009).

    CAS  Article  Google Scholar 

  37. 37.

    A. S. Chaus, M. Sahul, and M. Braèík, “Diffusion induced changes in cast and wrought M2 high-speed steel subjected to homogenisation annealing,” Diff. Found., 22, 24 – 33 (2019).

    CAS  Article  Google Scholar 

  38. 38.

    A. S. Chaus, “Microstructural and properties evaluation of M2 high speed steel after inoculating addition of powder W and WC,” Mater. Sci. Technol., 30(9), 1105 – 1115 (2014).

    CAS  Article  Google Scholar 

  39. 39.

    E. Gudremon, Special Steels, Vols. 1, 2 [Russian translation], Metallurgiya, Moscow (1966), 1640 p.

    Google Scholar 

  40. 40.

    H. H.Weigand and E. Habderling, “Sonderkarbide in schnellarbeitsstählen,” TEW – Techn. Ber., 1(2), 110 – 121 (1975).

    CAS  Google Scholar 

  41. 41.

    H. Fredriksson and J. Stjerndahl, “Solidification on iron-base alloys,” Metall. Sci., 16(12), 575 – 584 (1982).

    CAS  Article  Google Scholar 

  42. 42.

    T. K. Jones and T. Mukherjee, “Identification of carbides in as-cast 18-4-1 high speed steels,” J. Iron Steel Inst., 196(1), 90 – 92 (1970).

    Google Scholar 

Download references

The work has been performed with financial support for Projects APVV-16-0057 and VEGA 1/0747/19.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. S. Chaus.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 8, pp. 3 – 9, August, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chaus, A.S., Braèík, M., Sahul, M. et al. High-Temperature Transformation of Carbides in Skeleton Eutectic and Delta-Eutectoid of Cast High-Speed Steel. Met Sci Heat Treat 62, 489–497 (2020). https://doi.org/10.1007/s11041-020-00590-5

Download citation

Key words

  • high-speed steel
  • eutectic
  • δ-eutectoid
  • M6C carbide
  • fragmentation
  • decomposition