Computer Simulation and Experimental Study of Isothermal Bainitic Transformation in Alloy Steels

The main factors responsible for the kinetics of isothermal bainitic transformation in alloy steels are determined using computer simulation of the solid-state phase transformation. The effect of the initial configuration of nuclei of the new phase in the volume of the metal on the parameters of the process of bainitic transformation is determined. Comparative analysis of the computed kinetics of phase transformation at different rates of nucleation of the new phase and of the experimentally observed bainite kinetics in steels 25G2S2N2MA, 300M and 50KhMFA is performed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    E. S. Davenport and E. S. Bain, “Transformation of austenite at constant subcritical temperatures,” Trans. Amer. Inst. Miner. Metall. Eng., 90, 117 – 154 (1930).

    Google Scholar 

  2. 2.

    H. K. D. H. Bhadeshia, Bainite in Steels: Theory and Practice, CRS Press, USA (2015), 616 p.

    Google Scholar 

  3. 3.

    J. R. Vilella, G. E. Guellich, and E. C. Bain, “On naming the aggregate constituents in steel,” Trans. ASM, 24, 255 – 261 (1936).

    Google Scholar 

  4. 4.

    M. J. Santofimia, F. G. Caballero, C. Capdevila, et al., “Evaluation of displacive models for bainite transformation kinetics in steels,” Mater. Trans., 47(6), 1492 – 1500 (2006).

    CAS  Article  Google Scholar 

  5. 5.

    E. Pereloma and D. V. Edmonds (eds.), Phase Transformations in Steels, Woodhead Publishing, UK (2012), 805 p.

    Google Scholar 

  6. 6.

    R. E. Smallman and A. H. W. Ngan, Modern Physical Metallurgy, Elsevier Ltd., UK (2014), 720 p.

    Google Scholar 

  7. 7.

    M. V. Maisuradze and M. A. Ryzhkov, “Thermal stabilization of austenite during quenching and partitioning of austenite for automotive steels,” Metallurgist, 62(3–4), 337 – 347 (2018).

    CAS  Article  Google Scholar 

  8. 8.

    C. Goulas, A. Kumar, M. G. Mecozzi, et al., “Atomic-scale investigations of isothermally formed bainite microstructures in 51CrV4 spring steels,” Mater. Charact., 157, 67 – 75 (2019).

    Article  Google Scholar 

  9. 9.

    J. M. Robertson, “The microstructure of rapidly cooled steel,” J. Iron Steel Inst., 119, 391 – 424 (1929).

    Google Scholar 

  10. 10.

    M. Hillert, “Diffusion in growth of bainite,” Metall. Mater. Trans. A, 25(9), 1957 – 1966 (1994).

    Article  Google Scholar 

  11. 11.

    J. Yin, M. Hillert, and A. Borgenstam, “Morphology of upper and lower bainite with 0.7 mass pct C,” Metall. Mater. Trans. A, 48(9), 4006 – 4024 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    J. Jin, M. Hillert, and A. Borgenstam, “Second stage of upper bainite in a 0.3 mass pct C steel,” Metall. Mater. Trans. A, 48(3), 144 – 1458 (2017).

    Google Scholar 

  13. 13.

    S. Sainis, H. Farahani, E. Gamsjäger, and S. Van der Zwaag, “An in-situ LSCM study on bainite formation in a Fe – 0.2C – 1.5Mn – 2.0Cr alloy,” Metals, 8, 498 – 508 (2018).

    Article  Google Scholar 

  14. 14.

    L. C. D. Fielding, “The bainite controversy,” Mater. Sci. Technol., 29(4), 383 – 399 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    R. F. Mehl, Mechanism and Rate of Decomposition from Austenite, ASM (1939), 65 p.

    Google Scholar 

  16. 16.

    M. A. Smirnov, I. Yu. Pyshmintsev, and A. N. Boryakova, “Classification of low-carbon pipe steel microsections,” Metallurgist, 54(7–8), 444 – 454 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    S. A. Khan and H. K. D. H. Bhadeshia, “The bainite transformation in chemically heterogeneous 300M high-strength steel,” Metall. Trans. A, 21, 859 – 875 (1990).

    Article  Google Scholar 

  18. 18.

    A. N. Kolmogorov, “On the statistical theory of crystallization of metals,” Izv. Akad. Nauk SSSR, No. 3, 355 – 359 (1937).

  19. 19.

    W. A. Johnson and R. F. Mehl, “Reaction kinetics in processes of nucleation and growth,” Trans. AIME, 135, 416 – 468 (1939).

    Google Scholar 

  20. 20.

    M. Avrami, “Kinetics of phase change I. General theory,” J. Chem. Phys., 7, 1103 – 1112 (1939).

    CAS  Article  Google Scholar 

  21. 21.

    M. Avrami, “Kinetics of phase change II. Transformation-time relations for random distribution of nuclei,” J. Chem. Phys., 8, 212 – 224 (1940).

    CAS  Article  Google Scholar 

  22. 22.

    M. Avrami, “Kinetics of phase change III. Granulation, phase change and microstructure,” J. Chem. Phys., 9, 177 – 184 (1941).

    CAS  Article  Google Scholar 

  23. 23.

    J. B. Austin and R. L. Rickett, “Kinetics of the decomposition of austenite at constant temperature,” Trans. Amer. Inst. Mining Metall. Eng., 964, 1 – 20 (1939).

    Google Scholar 

  24. 24.

    P. D. Lebedev and A. A. Uspenskii, Software for Plotting Wave Fronts and the Function of Euclidean Distance to a Compact Nonconvex Set, Certificate for State Registration of Computer Software No. 2017662074 on 27.10.2017 [in Russian].

  25. 25.

    P. L. Lebedev and A. A. Uspenskii, “Design of visual solution of the task of performance control at a low order of smoothness of the boundary of the goal set,” Trudy Inst. Matem. Mekhan., 25(1), 108 – 119 (2019).

    Google Scholar 

  26. 26.

    R. W. Cahn and P. Haansen, Physical Metallurgy, Vol. 2, North-Holland, Amsterdam (1996), 940 p.

    Google Scholar 

  27. 27.

    J. W. Christian, The Theory of Transformations in Metal and Alloys, Pergamon, Amsterdam (2002), 1200 p.

    Google Scholar 

  28. 28.

    E. R. Petty, Physical Metallurgy of Engineering Materials, George Allen and Unwin, London (1970), 304 p.

    Google Scholar 

Download references

The work has been performed with financial support of Act No. 211 of the Government of the Russian Federation, contract No. 02.A03.21.006, within a state assignment of the Ministry of Science and Higher Education of the Russian Federation, project No. 11.1465.2014/K.

Author information



Corresponding author

Correspondence to Yu. V. Yudin.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 7, pp. 60 – 67, July, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yudin, Y.V., Kuklina, A.A., Maisuradze, M.V. et al. Computer Simulation and Experimental Study of Isothermal Bainitic Transformation in Alloy Steels. Met Sci Heat Treat 62, 479–486 (2020).

Download citation

Key words

  • steel
  • bainite
  • kinetics
  • transformation
  • isothermal hold
  • computer simulation
  • KJMA equation
  • Austin–Rickett equation